Spaces:
Runtime error
Runtime error
File size: 3,184 Bytes
e173a84 848a638 e173a84 a24abaa e173a84 a24abaa e173a84 bb5ec6d e173a84 bb5ec6d 95cdb44 bb5ec6d e173a84 242b67f c89095f e173a84 bb5ec6d e173a84 2a6db88 e173a84 242b67f 848a638 194e5e6 848a638 242b67f 848a638 e173a84 a24abaa 3076001 928efab ed9d473 928efab ed9d473 928efab c89095f 928efab e173a84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import io
import requests
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from PIL import Image
import gradio as gr
import uform
from datetime import datetime
model_multi = uform.get_model('unum-cloud/uform-vl-multilingual')
embeddings = np.load('tensors/embeddings.npy')
embeddings = torch.tensor(embeddings)
#features = np.load('multilingual-image-search/tensors/features.npy')
#features = torch.tensor(features)
img_df = pd.read_csv('image_data.csv')
def url2img(url, resize = False, fix_height = 200):
data = requests.get(url, allow_redirects = True).content
img = Image.open(io.BytesIO(data))
if resize:
img.thumbnail([fix_height, fix_height], Image.LANCZOS)
return img
def find_topk(text):
print('text', text)
top_k = 10
text_data = model_multi.preprocess_text(text)
text_features, text_embedding = model_multi.encode_text(text_data, return_features=True)
print('Got features', datetime.now().strftime("%H:%M:%S"))
sims = F.cosine_similarity(text_embedding, embeddings)
vals, inds = sims.topk(top_k)
top_k_urls = img_df.iloc[inds]['photo_image_url'].values
print('top_k_urls', top_k_urls)
print(datetime.now().strftime("%H:%M:%S"))
images = [url2img(url, resize = False) for url in top_k_urls]
print('got PIL images')
print(datetime.now().strftime("%H:%M:%S"))
return images
# def rerank(text_features, text_data):
# # craet joint embeddings & get scores
# joint_embedding = model_multi.encode_multimodal(
# image_features=image_features,
# text_features=text_features,
# attention_mask=text_data['attention_mask']
# )
# score = model_multi.get_matching_scores(joint_embedding)
# # argmax to get top N
# return
#demo = gr.Interface(find_topk, inputs = 'text', outputs = 'image')
print('version', gr.__version__)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown('# Enter a prompt in one of the supported languages.')
with gr.Row():
gr.Markdown('| Code | Lang | # | Code | Lang |\n'
'| :------- | :------- | :--- | :------- | :------------------- |\n'
'| eng_Latn | English | # | fra_Latn | French |\n'
'| deu_Latn | German | # | ita_Latn | Italian |\n'
'| ita_Latn | Spanish | # | jpn_Jpan | Japanese |\n'
'| tur_Latn | Turkish | # | zho_Hans | Chinese (Simplified) |\n'
'| kor_Hang | Korean | # | pol_Latn | Polish |\n'
'| rus_Cyrl | Russian | # | . | . |\n')
with gr.Column():
prompt_box = gr.Textbox(label = 'Enter your prompt', lines = 3)
btn_search = gr.Button("Find images")
gallery = gr.Gallery().style(columns=5, rows=2, object_fit="contain", height="auto")
btn_search.click(find_topk, inputs = prompt_box, outputs = gallery)
if __name__ == "__main__":
demo.launch() |