Spaces:
Runtime error
Runtime error
File size: 20,662 Bytes
b3b66bf c919a10 53c7098 6aaa79e 59c62cc b9f9a46 684bece 2b36c3d 809397a 88bbb22 957783c 8173b7d 684bece 53c7098 c919a10 90a0c6e 793e72e af4bac7 0f3449e c919a10 17829dc 0f3449e 17829dc 0f3449e c919a10 af4bac7 81d02d1 f599584 828cfdc 81d02d1 828cfdc 81d02d1 2af566a 17829dc c919a10 828cfdc 2af566a 17829dc 828cfdc 53c7098 81d02d1 f599584 828cfdc 81d02d1 828cfdc 81d02d1 2af566a 17829dc 53c7098 828cfdc 2af566a 17829dc 828cfdc 59c62cc 2af566a 17829dc 59c62cc 957783c 14de3cc 957783c 14de3cc 957783c 14de3cc 957783c d878ab1 f6a6c6d 17829dc f6a6c6d d878ab1 65cde5f 1b07906 65cde5f 684bece 2af566a 17829dc 684bece 2af566a 17829dc 684bece f6a6c6d 684bece 57b3cde 65cde5f 1b07906 65cde5f 2b36c3d fee4d90 2b36c3d fee4d90 2b36c3d ff5756a 2b36c3d 809397a 1050e5a 809397a 1050e5a 809397a 88bbb22 8173b7d c919a10 8c87ef1 c919a10 b3b66bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import gradio as gr
import gemini_gradio
import openai_gradio
import anthropic_gradio
import sambanova_gradio
import xai_gradio
import hyperbolic_gradio
import perplexity_gradio
import mistral_gradio
import fireworks_gradio
import cerebras_gradio
import groq_gradio
import together_gradio
with gr.Blocks(fill_height=True) as demo:
with gr.Tab("Meta Llama"):
with gr.Row():
llama_model = gr.Dropdown(
choices=[
'Meta-Llama-3.2-1B-Instruct', # Llama 3.2 1B
'Meta-Llama-3.2-3B-Instruct', # Llama 3.2 3B
'Llama-3.2-11B-Vision-Instruct', # Llama 3.2 11B
'Llama-3.2-90B-Vision-Instruct', # Llama 3.2 90B
'Meta-Llama-3.1-8B-Instruct', # Llama 3.1 8B
'Meta-Llama-3.1-70B-Instruct', # Llama 3.1 70B
'Meta-Llama-3.1-405B-Instruct' # Llama 3.1 405B
],
value='Llama-3.2-90B-Vision-Instruct', # Default to the most advanced model
label="Select Llama Model",
interactive=True
)
llama_interface = gr.load(
name=llama_model.value,
src=sambanova_gradio.registry,
multimodal=True,
fill_height=True
)
def update_llama_model(new_model):
return gr.load(
name=new_model,
src=sambanova_gradio.registry,
multimodal=True,
fill_height=True
)
llama_model.change(
fn=update_llama_model,
inputs=[llama_model],
outputs=[llama_interface]
)
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
with gr.Tab("Gemini"):
with gr.Row():
gemini_model = gr.Dropdown(
choices=[
'gemini-1.5-flash', # Fast and versatile performance
'gemini-1.5-flash-8b', # High volume, lower intelligence tasks
'gemini-1.5-pro', # Complex reasoning tasks
'gemini-exp-1114' # Quality improvements
],
value='gemini-1.5-pro', # Default to the most advanced model
label="Select Gemini Model",
interactive=True
)
gemini_interface = gr.load(
name=gemini_model.value,
src=gemini_gradio.registry,
fill_height=True
)
def update_gemini_model(new_model):
return gr.load(
name=new_model,
src=gemini_gradio.registry,
fill_height=True
)
gemini_model.change(
fn=update_gemini_model,
inputs=[gemini_model],
outputs=[gemini_interface]
)
with gr.Tab("ChatGPT"):
with gr.Row():
model_choice = gr.Dropdown(
choices=[
'gpt-4o', # Most advanced model
'gpt-4o-2024-08-06', # Latest snapshot
'gpt-4o-2024-05-13', # Original snapshot
'chatgpt-4o-latest', # Latest ChatGPT version
'gpt-4o-mini', # Small model
'gpt-4o-mini-2024-07-18', # Latest mini version
'o1-preview', # Reasoning model
'o1-preview-2024-09-12', # Latest o1 model snapshot
'o1-mini', # Faster reasoning model
'o1-mini-2024-09-12', # Latest o1-mini model snapshot
'gpt-4-turbo', # Latest GPT-4 Turbo model
'gpt-4-turbo-2024-04-09', # Latest GPT-4 Turbo snapshot
'gpt-4-turbo-preview', # GPT-4 Turbo preview model
'gpt-4-0125-preview', # GPT-4 Turbo preview model for laziness
'gpt-4-1106-preview', # Improved instruction following model
'gpt-4', # Standard GPT-4 model
'gpt-4-0613' # Snapshot of GPT-4 from June 2023
],
value='gpt-4o', # Default to the most advanced model
label="Select Model",
interactive=True
)
chatgpt_interface = gr.load(
name=model_choice.value,
src=openai_gradio.registry,
accept_token=True,
fill_height=True
)
def update_model(new_model):
return gr.load(
name=new_model,
src=openai_gradio.registry,
accept_token=True,
fill_height=True
)
model_choice.change(
fn=update_model,
inputs=[model_choice],
outputs=[chatgpt_interface]
)
with gr.Tab("Claude"):
with gr.Row():
claude_model = gr.Dropdown(
choices=[
'claude-3-5-sonnet-20241022', # Latest Sonnet
'claude-3-5-haiku-20241022', # Latest Haiku
'claude-3-opus-20240229', # Opus
'claude-3-sonnet-20240229', # Previous Sonnet
'claude-3-haiku-20240307' # Previous Haiku
],
value='claude-3-5-sonnet-20241022', # Default to latest Sonnet
label="Select Model",
interactive=True
)
claude_interface = gr.load(
name=claude_model.value,
src=anthropic_gradio.registry,
accept_token=True,
fill_height=True
)
def update_claude_model(new_model):
return gr.load(
name=new_model,
src=anthropic_gradio.registry,
accept_token=True,
fill_height=True
)
claude_model.change(
fn=update_claude_model,
inputs=[claude_model],
outputs=[claude_interface]
)
with gr.Tab("Grok"):
gr.load(
name='grok-beta',
src=xai_gradio.registry,
accept_token=True,
fill_height=True
)
with gr.Tab("Groq"):
with gr.Row():
groq_model = gr.Dropdown(
choices=[
'llama3-groq-8b-8192-tool-use-preview',
'llama3-groq-70b-8192-tool-use-preview',
'llama-3.2-1b-preview',
'llama-3.2-3b-preview',
'llama-3.2-11b-text-preview',
'llama-3.2-90b-text-preview',
'mixtral-8x7b-32768'
],
value='llama3-groq-70b-8192-tool-use-preview', # Default to Groq's optimized model
label="Select Groq Model",
interactive=True
)
groq_interface = gr.load(
name=groq_model.value,
src=groq_gradio.registry,
fill_height=True
)
def update_groq_model(new_model):
return gr.load(
name=new_model,
src=groq_gradio.registry,
fill_height=True
)
groq_model.change(
fn=update_groq_model,
inputs=[groq_model],
outputs=[groq_interface]
)
gr.Markdown("""
**Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/).
""")
with gr.Tab("Qwen"):
with gr.Row():
qwen_model = gr.Dropdown(
choices=[
'Qwen/Qwen2.5-72B-Instruct',
'Qwen/Qwen2.5-Coder-32B-Instruct'
],
value='Qwen/Qwen2.5-72B-Instruct',
label="Select Qwen Model",
interactive=True
)
qwen_interface = gr.load(
name=qwen_model.value,
src=hyperbolic_gradio.registry,
fill_height=True
)
def update_qwen_model(new_model):
return gr.load(
name=new_model,
src=hyperbolic_gradio.registry,
fill_height=True
)
qwen_model.change(
fn=update_qwen_model,
inputs=[qwen_model],
outputs=[qwen_interface]
)
gr.Markdown("""
<div>
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
</div>
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
""")
with gr.Tab("Perplexity"):
with gr.Row():
perplexity_model = gr.Dropdown(
choices=[
# Sonar Models (Online)
'llama-3.1-sonar-small-128k-online', # 8B params
'llama-3.1-sonar-large-128k-online', # 70B params
'llama-3.1-sonar-huge-128k-online', # 405B params
# Sonar Models (Chat)
'llama-3.1-sonar-small-128k-chat', # 8B params
'llama-3.1-sonar-large-128k-chat', # 70B params
# Open Source Models
'llama-3.1-8b-instruct', # 8B params
'llama-3.1-70b-instruct' # 70B params
],
value='llama-3.1-sonar-large-128k-online', # Default to large online model
label="Select Perplexity Model",
interactive=True
)
perplexity_interface = gr.load(
name=perplexity_model.value,
src=perplexity_gradio.registry,
accept_token=True,
fill_height=True
)
def update_perplexity_model(new_model):
return gr.load(
name=new_model,
src=perplexity_gradio.registry,
accept_token=True,
fill_height=True
)
perplexity_model.change(
fn=update_perplexity_model,
inputs=[perplexity_model],
outputs=[perplexity_interface]
)
gr.Markdown("""
**Note:** Models are grouped into three categories:
- **Sonar Online Models**: Include search capabilities (beta access required)
- **Sonar Chat Models**: Standard chat models
- **Open Source Models**: Based on Hugging Face implementations
For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai).
""")
with gr.Tab("DeepSeek-V2.5"):
gr.load(
name='deepseek-ai/DeepSeek-V2.5',
src=hyperbolic_gradio.registry,
fill_height=True
)
gr.Markdown("""
<div>
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
</div>
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
""")
with gr.Tab("Mistral"):
with gr.Row():
mistral_model = gr.Dropdown(
choices=[
# Premier Models
'mistral-large-latest', # Top-tier reasoning model (128k)
'pixtral-large-latest', # Frontier-class multimodal model (128k)
'ministral-3b-latest', # Best edge model (128k)
'ministral-8b-latest', # High performance edge model (128k)
'mistral-small-latest', # Enterprise-grade small model (32k)
'codestral-latest', # Code-specialized model (32k)
'mistral-embed', # Semantic text representation (8k)
'mistral-moderation-latest', # Content moderation service (8k)
# Free Models
'pixtral-12b-2409', # Free 12B multimodal model (128k)
'open-mistral-nemo', # Multilingual model (128k)
'open-codestral-mamba' # Mamba-based coding model (256k)
],
value='pixtral-large-latest', # pixtral for vision
label="Select Mistral Model",
interactive=True
)
mistral_interface = gr.load(
name=mistral_model.value,
src=mistral_gradio.registry,
fill_height=True
)
def update_mistral_model(new_model):
return gr.load(
name=new_model,
src=mistral_gradio.registry,
fill_height=True
)
mistral_model.change(
fn=update_mistral_model,
inputs=[mistral_model],
outputs=[mistral_interface],
)
gr.Markdown("""
**Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/).
Models are grouped into two categories:
- **Premier Models**: Require a paid API key
- **Free Models**: Available with free API keys
Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities.
""")
with gr.Tab("Fireworks"):
with gr.Row():
fireworks_model = gr.Dropdown(
choices=[
'f1-preview', # Latest F1 preview model
'f1-mini-preview', # Smaller, faster model
],
value='f1-preview', # Default to preview model
label="Select Fireworks Model",
interactive=True
)
fireworks_interface = gr.load(
name=fireworks_model.value,
src=fireworks_gradio.registry,
fill_height=True
)
def update_fireworks_model(new_model):
return gr.load(
name=new_model,
src=fireworks_gradio.registry,
fill_height=True
)
fireworks_model.change(
fn=update_fireworks_model,
inputs=[fireworks_model],
outputs=[fireworks_interface]
)
gr.Markdown("""
**Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/).
""")
with gr.Tab("Cerebras"):
with gr.Row():
cerebras_model = gr.Dropdown(
choices=[
'llama3.1-8b',
'llama3.1-70b',
'llama3.1-405b'
],
value='llama3.1-70b', # Default to mid-size model
label="Select Cerebras Model",
interactive=True
)
cerebras_interface = gr.load(
name=cerebras_model.value,
src=cerebras_gradio.registry,
accept_token=True, # Added token acceptance
fill_height=True
)
def update_cerebras_model(new_model):
return gr.load(
name=new_model,
src=cerebras_gradio.registry,
accept_token=True, # Added token acceptance
fill_height=True
)
with gr.Tab("Together"):
with gr.Row():
together_model = gr.Dropdown(
choices=[
# Vision Models
'meta-llama/Llama-Vision-Free', # 131k context (Free)
'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo', # 131k context
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo', # 131k context
# Meta Llama 3.x Models
'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo', # 131k context
'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', # 131k context
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo', # 130k context
'meta-llama/Meta-Llama-3-8B-Instruct-Turbo', # 8k context
'meta-llama/Meta-Llama-3-70B-Instruct-Turbo', # 8k context
'meta-llama/Llama-3.2-3B-Instruct-Turbo', # 131k context
'meta-llama/Meta-Llama-3-8B-Instruct-Lite', # 8k context, INT4
'meta-llama/Meta-Llama-3-70B-Instruct-Lite', # 8k context, INT4
'meta-llama/Llama-3-8b-chat-hf', # 8k context
'meta-llama/Llama-3-70b-chat-hf', # 8k context
# Other Large Models
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF', # 32k context
'Qwen/Qwen2.5-Coder-32B-Instruct', # 32k context
'microsoft/WizardLM-2-8x22B', # 65k context
'google/gemma-2-27b-it', # 8k context
'google/gemma-2-9b-it', # 8k context
'databricks/dbrx-instruct', # 32k context
# Mixtral Models
'mistralai/Mixtral-8x7B-Instruct-v0.1', # 32k context
'mistralai/Mixtral-8x22B-Instruct-v0.1', # 65k context
# Qwen Models
'Qwen/Qwen2.5-7B-Instruct-Turbo', # 32k context
'Qwen/Qwen2.5-72B-Instruct-Turbo', # 32k context
'Qwen/Qwen2-72B-Instruct', # 32k context
# Other Models
'deepseek-ai/deepseek-llm-67b-chat', # 4k context
'google/gemma-2b-it', # 8k context
'Gryphe/MythoMax-L2-13b', # 4k context
'meta-llama/Llama-2-13b-chat-hf', # 4k context
'mistralai/Mistral-7B-Instruct-v0.1', # 8k context
'mistralai/Mistral-7B-Instruct-v0.2', # 32k context
'mistralai/Mistral-7B-Instruct-v0.3', # 32k context
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', # 32k context
'togethercomputer/StripedHyena-Nous-7B', # 32k context
'upstage/SOLAR-10.7B-Instruct-v1.0' # 4k context
],
value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo', # Default to recommended vision model
label="Select Together Model",
interactive=True
)
together_interface = gr.load(
name=together_model.value,
src=together_gradio.registry,
accept_token=True,
multimodal=True, # Added multimodal support
fill_height=True
)
def update_together_model(new_model):
return gr.load(
name=new_model,
src=together_gradio.registry,
accept_token=True,
multimodal=True, # Added multimodal support
fill_height=True
)
together_model.change(
fn=update_together_model,
inputs=[together_model],
outputs=[together_interface]
)
gr.Markdown("""
**Note:** You need a Together AI API key to use these models. Get one at [Together AI](https://www.together.ai/).
""")
demo.launch(ssr_mode=False)
|