mariagrandury
commited on
Commit
·
1f70be8
1
Parent(s):
6f2c797
first commit
Browse files- .gitignore +1 -0
- README.md +1 -3
- app.py +75 -0
- numero_datasets_hub.ipynb +781 -0
- numero_datasets_hub_output.ipynb +918 -0
- plots/datasets_hub.png +0 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Language Gap In The Hub
|
3 |
emoji: 📊
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
@@ -9,5 +9,3 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Language Gap In The Hugging Face Hub
|
3 |
emoji: 📊
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import papermill as pm
|
3 |
+
|
4 |
+
|
5 |
+
def run_notebook():
|
6 |
+
try:
|
7 |
+
# Execute the notebook
|
8 |
+
pm.execute_notebook(
|
9 |
+
"numero_datasets_hub.ipynb",
|
10 |
+
"numero_datasets_hub_output.ipynb", # This will save the output in a new notebook
|
11 |
+
)
|
12 |
+
return "Notebook executed successfully!"
|
13 |
+
except Exception as e:
|
14 |
+
return f"Failed to execute notebook: {str(e)}"
|
15 |
+
|
16 |
+
|
17 |
+
def create_app():
|
18 |
+
with gr.Blocks() as app:
|
19 |
+
|
20 |
+
gr.Markdown("# The language gap in the Hugging Face Hub")
|
21 |
+
|
22 |
+
# Button to run the notebook
|
23 |
+
run_button = gr.Button("Run Notebook")
|
24 |
+
output_label = gr.Label() # To display the result of running the notebook
|
25 |
+
|
26 |
+
run_button.click(run_notebook, outputs=output_label)
|
27 |
+
|
28 |
+
# Create a 2x2 grid for images
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
image1 = gr.Image(
|
32 |
+
value="plots/datasets_hub.png",
|
33 |
+
label="Image 1",
|
34 |
+
show_label=True,
|
35 |
+
show_download_button=True,
|
36 |
+
show_share_button=True,
|
37 |
+
)
|
38 |
+
image2 = gr.Image(
|
39 |
+
value="datasets_hub.png",
|
40 |
+
label="Image 2",
|
41 |
+
)
|
42 |
+
with gr.Column():
|
43 |
+
image3 = gr.Image(
|
44 |
+
value="datasets_hub.png",
|
45 |
+
label="Image 3",
|
46 |
+
)
|
47 |
+
image4 = gr.Image(
|
48 |
+
value="datasets_hub.png",
|
49 |
+
label="Image 4",
|
50 |
+
)
|
51 |
+
|
52 |
+
# Description for images
|
53 |
+
gr.Markdown("### Image Descriptions")
|
54 |
+
gr.Markdown("Description for Image 1")
|
55 |
+
gr.Markdown("Description for Image 2")
|
56 |
+
gr.Markdown("Description for Image 3")
|
57 |
+
gr.Markdown("Description for Image 4")
|
58 |
+
|
59 |
+
# Collapsible block for citation
|
60 |
+
with gr.Accordion("Citation Information"):
|
61 |
+
gr.Markdown(
|
62 |
+
"""
|
63 |
+
If you use the images or code please cite:
|
64 |
+
|
65 |
+
```
|
66 |
+
fjdlsafd
|
67 |
+
```
|
68 |
+
"""
|
69 |
+
)
|
70 |
+
|
71 |
+
return app
|
72 |
+
|
73 |
+
|
74 |
+
app = create_app()
|
75 |
+
app.launch()
|
numero_datasets_hub.ipynb
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"id": "bCPvBCk_VLoi",
|
11 |
+
"outputId": "48174b27-072f-4cf9-bfcc-2a7cb12f60ba"
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"name": "stdout",
|
16 |
+
"output_type": "stream",
|
17 |
+
"text": [
|
18 |
+
"Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.20.3)\n",
|
19 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (3.14.0)\n",
|
20 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2023.6.0)\n",
|
21 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2.31.0)\n",
|
22 |
+
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.66.4)\n",
|
23 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (6.0.1)\n",
|
24 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.11.0)\n",
|
25 |
+
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (24.0)\n",
|
26 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (3.3.2)\n",
|
27 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (3.7)\n",
|
28 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (2.0.7)\n",
|
29 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (2024.2.2)\n"
|
30 |
+
]
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"!pip install huggingface_hub"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 2,
|
40 |
+
"metadata": {
|
41 |
+
"id": "NbQeXxudVJW9"
|
42 |
+
},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"from datetime import datetime\n",
|
46 |
+
"\n",
|
47 |
+
"import matplotlib.pyplot as plt\n",
|
48 |
+
"import pandas as pd\n",
|
49 |
+
"from huggingface_hub import HfApi\n"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": 3,
|
55 |
+
"metadata": {
|
56 |
+
"colab": {
|
57 |
+
"base_uri": "https://localhost:8080/"
|
58 |
+
},
|
59 |
+
"id": "ogyTHBYJVZ8I",
|
60 |
+
"outputId": "f23a554a-7328-4e50-d87c-90368294467d"
|
61 |
+
},
|
62 |
+
"outputs": [
|
63 |
+
{
|
64 |
+
"name": "stderr",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n",
|
68 |
+
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
|
69 |
+
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
|
70 |
+
"You will be able to reuse this secret in all of your notebooks.\n",
|
71 |
+
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
|
72 |
+
" warnings.warn(\n"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"name": "stdout",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"145101\n"
|
80 |
+
]
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"source": [
|
84 |
+
"hf_api = HfApi()\n",
|
85 |
+
"\n",
|
86 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
87 |
+
"\n",
|
88 |
+
"total_count = len(list(all_datasets))\n",
|
89 |
+
"print(total_count)"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 4,
|
95 |
+
"metadata": {
|
96 |
+
"id": "GXDMUU-4XmaI"
|
97 |
+
},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"# language_filter = filter(lambda dataset: 'language:es' in dataset.tags, all_datasets) # 882\n",
|
101 |
+
"\n",
|
102 |
+
"# spanish_filter = filter(lambda d: \"language:es\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:es\" for tag in d.tags), all_datasets) # 317\n",
|
103 |
+
"\n",
|
104 |
+
"#filtered_datasets_2 = filter(lambda dataset: \"es\" in dataset.card_data.language, all_datasets) # 882\n",
|
105 |
+
"\n",
|
106 |
+
"#filtered_datasets_3 = filter(lambda dataset: dataset.card_data.language == [\"es\"], all_datasets) #\n",
|
107 |
+
"\n",
|
108 |
+
"#for dataset in spanish_only_datasets:\n",
|
109 |
+
"# print(dataset)\n",
|
110 |
+
"# break"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 5,
|
116 |
+
"metadata": {
|
117 |
+
"colab": {
|
118 |
+
"base_uri": "https://localhost:8080/"
|
119 |
+
},
|
120 |
+
"id": "pjCvHVq_hChx",
|
121 |
+
"outputId": "d279d0bc-a3c6-4994-f23c-a7274b1f4ee8"
|
122 |
+
},
|
123 |
+
"outputs": [
|
124 |
+
{
|
125 |
+
"name": "stdout",
|
126 |
+
"output_type": "stream",
|
127 |
+
"text": [
|
128 |
+
"318\n"
|
129 |
+
]
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"source": [
|
133 |
+
"hf_api = HfApi()\n",
|
134 |
+
"\n",
|
135 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
136 |
+
"\n",
|
137 |
+
"spanish_filter = filter(lambda d: \"language:es\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:es\" for tag in d.tags), all_datasets) # 317\n",
|
138 |
+
"spanish_datasets = list(spanish_filter)\n",
|
139 |
+
"spanish_count = len(list(spanish_datasets))\n",
|
140 |
+
"print(spanish_count)\n"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 6,
|
146 |
+
"metadata": {
|
147 |
+
"colab": {
|
148 |
+
"base_uri": "https://localhost:8080/"
|
149 |
+
},
|
150 |
+
"id": "WANGkTpGRw8t",
|
151 |
+
"outputId": "da8931bf-7ae2-438d-8188-20190f568193"
|
152 |
+
},
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"name": "stdout",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"8357\n"
|
159 |
+
]
|
160 |
+
}
|
161 |
+
],
|
162 |
+
"source": [
|
163 |
+
"hf_api = HfApi()\n",
|
164 |
+
"\n",
|
165 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
166 |
+
"\n",
|
167 |
+
"english_filter = filter(lambda d: \"language:en\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:en\" for tag in d.tags), all_datasets)\n",
|
168 |
+
"english_datasets = list(english_filter)\n",
|
169 |
+
"english_count = len(list(english_datasets))\n",
|
170 |
+
"print(english_count)"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 7,
|
176 |
+
"metadata": {
|
177 |
+
"colab": {
|
178 |
+
"base_uri": "https://localhost:8080/"
|
179 |
+
},
|
180 |
+
"id": "yPtF0G7SWS53",
|
181 |
+
"outputId": "a2a51160-c803-4e7f-a6dc-8879eea1dd69"
|
182 |
+
},
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"name": "stdout",
|
186 |
+
"output_type": "stream",
|
187 |
+
"text": [
|
188 |
+
"568\n"
|
189 |
+
]
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"hf_api = HfApi()\n",
|
194 |
+
"\n",
|
195 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
196 |
+
"\n",
|
197 |
+
"chinese_filter = filter(lambda d: \"language:zh\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:zh\" for tag in d.tags), all_datasets)\n",
|
198 |
+
"chinese_datasets = list(chinese_filter)\n",
|
199 |
+
"chinese_count = len(list(chinese_datasets))\n",
|
200 |
+
"print(chinese_count)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 8,
|
206 |
+
"metadata": {
|
207 |
+
"colab": {
|
208 |
+
"base_uri": "https://localhost:8080/"
|
209 |
+
},
|
210 |
+
"id": "RlxAlOOsW7p9",
|
211 |
+
"outputId": "f1c12edd-5502-4018-b9a7-149f9fc29322"
|
212 |
+
},
|
213 |
+
"outputs": [
|
214 |
+
{
|
215 |
+
"name": "stdout",
|
216 |
+
"output_type": "stream",
|
217 |
+
"text": [
|
218 |
+
"436\n"
|
219 |
+
]
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"source": [
|
223 |
+
"hf_api = HfApi()\n",
|
224 |
+
"\n",
|
225 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
226 |
+
"\n",
|
227 |
+
"french_filter = filter(lambda d: \"language:fr\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:fr\" for tag in d.tags), all_datasets)\n",
|
228 |
+
"french_datasets = list(french_filter)\n",
|
229 |
+
"french_count = len(list(french_datasets))\n",
|
230 |
+
"print(french_count)"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 9,
|
236 |
+
"metadata": {
|
237 |
+
"colab": {
|
238 |
+
"base_uri": "https://localhost:8080/"
|
239 |
+
},
|
240 |
+
"id": "OMQfBXjUYBPz",
|
241 |
+
"outputId": "8cd3fdb9-0bc8-4d82-d25b-fb9eef7118ed"
|
242 |
+
},
|
243 |
+
"outputs": [
|
244 |
+
{
|
245 |
+
"name": "stdout",
|
246 |
+
"output_type": "stream",
|
247 |
+
"text": [
|
248 |
+
"13886\n"
|
249 |
+
]
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"source": [
|
253 |
+
"hf_api = HfApi()\n",
|
254 |
+
"\n",
|
255 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
256 |
+
"\n",
|
257 |
+
"mono_filter = filter(lambda dataset: sum(tag.startswith('language:') for tag in dataset.tags) == 1, all_datasets)\n",
|
258 |
+
"mono_datasets = list(mono_filter)\n",
|
259 |
+
"mono_count = len(list(mono_datasets))\n",
|
260 |
+
"print(mono_count)"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 10,
|
266 |
+
"metadata": {
|
267 |
+
"colab": {
|
268 |
+
"base_uri": "https://localhost:8080/",
|
269 |
+
"height": 180
|
270 |
+
},
|
271 |
+
"id": "sTPechkdWmYS",
|
272 |
+
"outputId": "bb49f9f4-150b-4a29-d58e-faff4f88cce3"
|
273 |
+
},
|
274 |
+
"outputs": [
|
275 |
+
{
|
276 |
+
"ename": "AssertionError",
|
277 |
+
"evalue": "",
|
278 |
+
"output_type": "error",
|
279 |
+
"traceback": [
|
280 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
281 |
+
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
|
282 |
+
"\u001b[0;32m<ipython-input-10-da38b5a6b412>\u001b[0m in \u001b[0;36m<cell line: 7>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mcreation_dates_english\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreated_at\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menglish_datasets\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcreation_dates_english\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m8336\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
283 |
+
"\u001b[0;31mAssertionError\u001b[0m: "
|
284 |
+
]
|
285 |
+
}
|
286 |
+
],
|
287 |
+
"source": [
|
288 |
+
"# Extract creation date\n",
|
289 |
+
"\n",
|
290 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
291 |
+
"assert len(creation_dates_spanish) == 318\n",
|
292 |
+
"\n",
|
293 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
294 |
+
"assert len(creation_dates_english) == 8336"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": null,
|
300 |
+
"metadata": {
|
301 |
+
"id": "hefZVynDSjjE"
|
302 |
+
},
|
303 |
+
"outputs": [],
|
304 |
+
"source": [
|
305 |
+
"print(creation_dates_spanish[0])"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "markdown",
|
310 |
+
"metadata": {
|
311 |
+
"id": "aFaEBlkkSbrs"
|
312 |
+
},
|
313 |
+
"source": [
|
314 |
+
"## Bar Chart\n",
|
315 |
+
"\n"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": null,
|
321 |
+
"metadata": {
|
322 |
+
"id": "dYJ2zd4dShYh"
|
323 |
+
},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"import matplotlib.pyplot as plt\n",
|
327 |
+
"from collections import Counter\n",
|
328 |
+
"\n",
|
329 |
+
"# Sample data (replace with your actual data)\n",
|
330 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
331 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
332 |
+
"\n",
|
333 |
+
"# Extract years from the creation dates\n",
|
334 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
335 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
336 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
337 |
+
"\n",
|
338 |
+
"# Plotting the bar chart\n",
|
339 |
+
"plt.figure(figsize=(10, 6))\n",
|
340 |
+
"plt.bar(years, [english_counts[year] for year in years], width=0.4, label='English Datasets', color='blue')\n",
|
341 |
+
"plt.bar(years, [spanish_counts[year] for year in years], width=0.4, label='Spanish Datasets', color='orange', bottom=[english_counts[year] for year in years])\n",
|
342 |
+
"\n",
|
343 |
+
"# Adding labels and title\n",
|
344 |
+
"plt.xlabel('Year')\n",
|
345 |
+
"plt.ylabel('Number of Datasets')\n",
|
346 |
+
"plt.title('Distribution of Monolingual English and Spanish Datasets by Year')\n",
|
347 |
+
"plt.xticks(years)\n",
|
348 |
+
"plt.legend()\n",
|
349 |
+
"\n",
|
350 |
+
"# Display the plot\n",
|
351 |
+
"plt.grid(True)\n",
|
352 |
+
"plt.tight_layout()\n",
|
353 |
+
"plt.show()\n",
|
354 |
+
"plt.savefig(\"plots/bar_stack.png\")\n"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
"execution_count": null,
|
360 |
+
"metadata": {
|
361 |
+
"id": "wViEE4wCUVgs"
|
362 |
+
},
|
363 |
+
"outputs": [],
|
364 |
+
"source": [
|
365 |
+
"import matplotlib.pyplot as plt\n",
|
366 |
+
"import numpy as np\n",
|
367 |
+
"from collections import Counter\n",
|
368 |
+
"\n",
|
369 |
+
"# Sample data (replace with your actual data)\n",
|
370 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
371 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
372 |
+
"\n",
|
373 |
+
"# Extract years from the creation dates\n",
|
374 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
375 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
376 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
377 |
+
"\n",
|
378 |
+
"# Define the width of each bar\n",
|
379 |
+
"bar_width = 0.4\n",
|
380 |
+
"\n",
|
381 |
+
"# Define the x-coordinates for the bars\n",
|
382 |
+
"years_index = np.arange(len(years))\n",
|
383 |
+
"\n",
|
384 |
+
"# Plotting the side-by-side bar chart\n",
|
385 |
+
"plt.figure(figsize=(10, 6))\n",
|
386 |
+
"plt.bar(years_index - bar_width/2, [english_counts[year] for year in years], width=bar_width, label='English Datasets', color='blue')\n",
|
387 |
+
"plt.bar(years_index + bar_width/2, [spanish_counts[year] for year in years], width=bar_width, label='Spanish Datasets', color='orange')\n",
|
388 |
+
"\n",
|
389 |
+
"# Adding labels and title\n",
|
390 |
+
"plt.xlabel('Year')\n",
|
391 |
+
"plt.ylabel('Number of Datasets')\n",
|
392 |
+
"plt.title('Distribution of Monolingual English and Spanish Datasets by Year')\n",
|
393 |
+
"plt.xticks(years_index, years)\n",
|
394 |
+
"plt.legend()\n",
|
395 |
+
"\n",
|
396 |
+
"# Display the plot\n",
|
397 |
+
"plt.grid(True)\n",
|
398 |
+
"plt.tight_layout()\n",
|
399 |
+
"plt.show()\n",
|
400 |
+
"plt.savefig(\"plots/bar_width.png\")"
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "markdown",
|
405 |
+
"metadata": {
|
406 |
+
"id": "Hp8vNA6LUA1E"
|
407 |
+
},
|
408 |
+
"source": [
|
409 |
+
"# Stacked Area Chart\n"
|
410 |
+
]
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"execution_count": null,
|
415 |
+
"metadata": {
|
416 |
+
"id": "CWgCunzGUCot"
|
417 |
+
},
|
418 |
+
"outputs": [],
|
419 |
+
"source": [
|
420 |
+
"import matplotlib.pyplot as plt\n",
|
421 |
+
"from collections import Counter\n",
|
422 |
+
"\n",
|
423 |
+
"# Sample data (replace with your actual data)\n",
|
424 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
425 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
426 |
+
"\n",
|
427 |
+
"# Extract years from the creation dates\n",
|
428 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
429 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
430 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
431 |
+
"\n",
|
432 |
+
"# Calculate cumulative counts\n",
|
433 |
+
"english_datasets_cumulative = [english_counts[year] for year in years]\n",
|
434 |
+
"spanish_datasets_cumulative = [spanish_counts[year] for year in years]\n",
|
435 |
+
"for i in range(1, len(years)):\n",
|
436 |
+
" english_datasets_cumulative[i] += english_datasets_cumulative[i-1]\n",
|
437 |
+
" spanish_datasets_cumulative[i] += spanish_datasets_cumulative[i-1]\n",
|
438 |
+
"\n",
|
439 |
+
"# Plotting the stacked area chart\n",
|
440 |
+
"plt.figure(figsize=(10, 6))\n",
|
441 |
+
"plt.stackplot(years, english_datasets_cumulative, spanish_datasets_cumulative, labels=['English Datasets', 'Spanish Datasets'], colors=['blue', 'orange'])\n",
|
442 |
+
"\n",
|
443 |
+
"# Adding labels and title\n",
|
444 |
+
"plt.xlabel('Year')\n",
|
445 |
+
"plt.ylabel('Cumulative Number of Datasets')\n",
|
446 |
+
"plt.title('Cumulative Growth of Monolingual English and Spanish Datasets Over Time')\n",
|
447 |
+
"plt.xticks(years)\n",
|
448 |
+
"plt.legend(loc='upper left')\n",
|
449 |
+
"\n",
|
450 |
+
"# Display the plot\n",
|
451 |
+
"plt.grid(True)\n",
|
452 |
+
"plt.tight_layout()\n",
|
453 |
+
"plt.show()\n",
|
454 |
+
"\n",
|
455 |
+
"plt.savefig(\"plots/stack_area_1.png\")"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"execution_count": null,
|
461 |
+
"metadata": {
|
462 |
+
"id": "GwRpZwYWhau3"
|
463 |
+
},
|
464 |
+
"outputs": [],
|
465 |
+
"source": [
|
466 |
+
"import matplotlib.pyplot as plt\n",
|
467 |
+
"import pandas as pd\n",
|
468 |
+
"from collections import Counter\n",
|
469 |
+
"\n",
|
470 |
+
"# Sample data (replace with your actual data)\n",
|
471 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
472 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
473 |
+
"\n",
|
474 |
+
"# Extract months from the creation dates\n",
|
475 |
+
"months_english = [(date.year, date.month) for date in creation_dates_english]\n",
|
476 |
+
"months_spanish = [(date.year, date.month) for date in creation_dates_spanish]\n",
|
477 |
+
"\n",
|
478 |
+
"# Count the occurrences of each month\n",
|
479 |
+
"english_counts = Counter(months_english)\n",
|
480 |
+
"spanish_counts = Counter(months_spanish)\n",
|
481 |
+
"\n",
|
482 |
+
"# Create a DataFrame for English datasets\n",
|
483 |
+
"df_english = pd.DataFrame.from_dict(english_counts, orient='index', columns=['English'])\n",
|
484 |
+
"df_english.index = pd.MultiIndex.from_tuples(df_english.index, names=['Year', 'Month'])\n",
|
485 |
+
"df_english = df_english.sort_index()\n",
|
486 |
+
"\n",
|
487 |
+
"# Create a DataFrame for Spanish datasets\n",
|
488 |
+
"df_spanish = pd.DataFrame.from_dict(spanish_counts, orient='index', columns=['Spanish'])\n",
|
489 |
+
"df_spanish.index = pd.MultiIndex.from_tuples(df_spanish.index, names=['Year', 'Month'])\n",
|
490 |
+
"df_spanish = df_spanish.sort_index()\n",
|
491 |
+
"\n",
|
492 |
+
"# Merge the DataFrames\n",
|
493 |
+
"df = pd.merge(df_english, df_spanish, how='outer', left_index=True, right_index=True).fillna(0)\n",
|
494 |
+
"\n",
|
495 |
+
"# Convert index to datetime\n",
|
496 |
+
"df.index = pd.to_datetime(df.index.map(lambda x: f'{x[0]}-{x[1]}'))\n",
|
497 |
+
"\n",
|
498 |
+
"# Calculate cumulative sum\n",
|
499 |
+
"df_cumulative = df.cumsum()\n",
|
500 |
+
"\n",
|
501 |
+
"# Plotting the stacked area chart\n",
|
502 |
+
"plt.figure(figsize=(8, 5))\n",
|
503 |
+
"plt.stackplot(df_cumulative.index, df_cumulative['English'], df_cumulative['Spanish'], labels=['English', 'Spanish'], colors=['orange', 'blue'])\n",
|
504 |
+
"\n",
|
505 |
+
"# Adding labels and title\n",
|
506 |
+
"plt.xlabel('Creation date')\n",
|
507 |
+
"plt.ylabel('Cumulative number of monolingual datasets')\n",
|
508 |
+
"plt.title('Cumulative growth of monolingual English and Spanish datasets in the Hugging Face Hub over time')\n",
|
509 |
+
"\n",
|
510 |
+
"# Display the plot\n",
|
511 |
+
"plt.xticks(rotation=45)\n",
|
512 |
+
"plt.legend(loc='upper left')\n",
|
513 |
+
"plt.grid(False)\n",
|
514 |
+
"plt.tight_layout()\n",
|
515 |
+
"plt.show()\n",
|
516 |
+
"\n",
|
517 |
+
"plt.savefig(\"plots/stack_area_2.png\")"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"cell_type": "code",
|
522 |
+
"execution_count": null,
|
523 |
+
"metadata": {
|
524 |
+
"id": "kJQ0OgRtglOQ"
|
525 |
+
},
|
526 |
+
"outputs": [],
|
527 |
+
"source": [
|
528 |
+
"import matplotlib.pyplot as plt\n",
|
529 |
+
"import pandas as pd\n",
|
530 |
+
"from collections import Counter\n",
|
531 |
+
"\n",
|
532 |
+
"# Sample data (replace with your actual data)\n",
|
533 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
534 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
535 |
+
"\n",
|
536 |
+
"# Extract months from the creation dates\n",
|
537 |
+
"months_english = [(date.year, date.month) for date in creation_dates_english]\n",
|
538 |
+
"months_spanish = [(date.year, date.month) for date in creation_dates_spanish]\n",
|
539 |
+
"\n",
|
540 |
+
"# Count the occurrences of each month\n",
|
541 |
+
"english_counts = Counter(months_english)\n",
|
542 |
+
"spanish_counts = Counter(months_spanish)\n",
|
543 |
+
"\n",
|
544 |
+
"# Create a DataFrame for English datasets\n",
|
545 |
+
"df_english = pd.DataFrame.from_dict(english_counts, orient='index', columns=['English'])\n",
|
546 |
+
"df_english.index = pd.MultiIndex.from_tuples(df_english.index, names=['Year', 'Month'])\n",
|
547 |
+
"df_english = df_english.sort_index()\n",
|
548 |
+
"\n",
|
549 |
+
"# Create a DataFrame for Spanish datasets\n",
|
550 |
+
"df_spanish = pd.DataFrame.from_dict(spanish_counts, orient='index', columns=['Spanish'])\n",
|
551 |
+
"df_spanish.index = pd.MultiIndex.from_tuples(df_spanish.index, names=['Year', 'Month'])\n",
|
552 |
+
"df_spanish = df_spanish.sort_index()\n",
|
553 |
+
"\n",
|
554 |
+
"# Merge the DataFrames\n",
|
555 |
+
"df = pd.merge(df_english, df_spanish, how='outer', left_index=True, right_index=True).fillna(0)\n",
|
556 |
+
"\n",
|
557 |
+
"# Convert index to datetime\n",
|
558 |
+
"df.index = pd.to_datetime(df.index.map(lambda x: f'{x[0]}-{x[1]}'))\n",
|
559 |
+
"\n",
|
560 |
+
"# Plotting the stacked area chart\n",
|
561 |
+
"plt.figure(figsize=(10, 6))\n",
|
562 |
+
"plt.stackplot(df.index, df['English'], df['Spanish'], labels=['English Datasets', 'Spanish Datasets'], colors=['blue', 'orange'])\n",
|
563 |
+
"\n",
|
564 |
+
"# Adding labels and title\n",
|
565 |
+
"plt.xlabel('Date')\n",
|
566 |
+
"plt.ylabel('Cumulative Number of Datasets')\n",
|
567 |
+
"plt.title('Cumulative Growth of Monolingual English and Spanish Datasets Over Time')\n",
|
568 |
+
"\n",
|
569 |
+
"# Display the plot\n",
|
570 |
+
"plt.xticks(rotation=45)\n",
|
571 |
+
"plt.legend(loc='upper left')\n",
|
572 |
+
"plt.grid(True)\n",
|
573 |
+
"plt.tight_layout()\n",
|
574 |
+
"plt.show()\n",
|
575 |
+
"\n",
|
576 |
+
"plt.savefig(\"plots/stack_area_3.png\")"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "markdown",
|
581 |
+
"metadata": {
|
582 |
+
"id": "IAnFHiPlgnRE"
|
583 |
+
},
|
584 |
+
"source": [
|
585 |
+
"## Pie Chart"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": null,
|
591 |
+
"metadata": {
|
592 |
+
"id": "8tKR1x-kVeZT"
|
593 |
+
},
|
594 |
+
"outputs": [],
|
595 |
+
"source": [
|
596 |
+
"import matplotlib.pyplot as plt\n",
|
597 |
+
"from collections import Counter\n",
|
598 |
+
"\n",
|
599 |
+
"# Calculate the count of \"other\" datasets\n",
|
600 |
+
"other_count = mono_count - (english_count + spanish_count + chinese_count + french_count)\n",
|
601 |
+
"\n",
|
602 |
+
"# Pie chart data\n",
|
603 |
+
"labels = ['English', 'Chinese', 'French', 'Spanish', 'Other']\n",
|
604 |
+
"sizes = [english_count, chinese_count, french_count, spanish_count, other_count]\n",
|
605 |
+
"\n",
|
606 |
+
"# Plotting the pie chart\n",
|
607 |
+
"plt.figure(figsize=(8, 8))\n",
|
608 |
+
"plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=180, colors=['blue', 'red', 'green', 'orange', 'purple'])\n",
|
609 |
+
"plt.title('Distribution of Monolingual Datasets by Language')\n",
|
610 |
+
"plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.\n",
|
611 |
+
"\n",
|
612 |
+
"# Display the plot\n",
|
613 |
+
"plt.show()\n",
|
614 |
+
"\n",
|
615 |
+
"plt.savefig(\"plots/pie_chart.png\")"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"cell_type": "markdown",
|
620 |
+
"metadata": {
|
621 |
+
"id": "z2xf8FrHROxy"
|
622 |
+
},
|
623 |
+
"source": [
|
624 |
+
"# Time series plot"
|
625 |
+
]
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"cell_type": "code",
|
629 |
+
"execution_count": null,
|
630 |
+
"metadata": {
|
631 |
+
"id": "DuPFSZKUhyQj"
|
632 |
+
},
|
633 |
+
"outputs": [],
|
634 |
+
"source": [
|
635 |
+
"# Prepare data for plotting\n",
|
636 |
+
"\n",
|
637 |
+
"df = pd.DataFrame(creation_dates_spanish, columns=[\"Date\"])\n",
|
638 |
+
"df[\"Count\"] = 1\n",
|
639 |
+
"# Ensure the 'Date' column is of type datetime\n",
|
640 |
+
"df['Date'] = pd.to_datetime(df['Date'])\n",
|
641 |
+
"# Group by month and calculate cumulative sum\n",
|
642 |
+
"df = df.groupby(pd.Grouper(key=\"Date\", freq=\"MS\")).sum().cumsum()\n",
|
643 |
+
"\n",
|
644 |
+
"# Plot the data\n",
|
645 |
+
"plt.figure(figsize=(10, 6))\n",
|
646 |
+
"plt.plot(\n",
|
647 |
+
" df.index,\n",
|
648 |
+
" df[\"Count\"],\n",
|
649 |
+
" #marker=\"o\",\n",
|
650 |
+
" color=\"g\"\n",
|
651 |
+
")\n",
|
652 |
+
"plt.title(\"Evolución de bases de datos monolingües en español\")\n",
|
653 |
+
"plt.xlabel(\"Fecha\")\n",
|
654 |
+
"plt.ylabel(\"Número de bases de datos\")\n",
|
655 |
+
"plt.grid(True)\n",
|
656 |
+
"plt.xticks(rotation=45)\n",
|
657 |
+
"plt.tight_layout()\n",
|
658 |
+
"plt.show()"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "code",
|
663 |
+
"execution_count": null,
|
664 |
+
"metadata": {
|
665 |
+
"id": "-Vu3PIe2hITq"
|
666 |
+
},
|
667 |
+
"outputs": [],
|
668 |
+
"source": [
|
669 |
+
"import matplotlib.pyplot as plt\n",
|
670 |
+
"import pandas as pd\n",
|
671 |
+
"from collections import Counter\n",
|
672 |
+
"\n",
|
673 |
+
"# Sample data (replace with your actual data)\n",
|
674 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
675 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
676 |
+
"\n",
|
677 |
+
"# Extract months from the creation dates\n",
|
678 |
+
"months_english = [(date.year, date.month) for date in creation_dates_english]\n",
|
679 |
+
"months_spanish = [(date.year, date.month) for date in creation_dates_spanish]\n",
|
680 |
+
"\n",
|
681 |
+
"# Count the occurrences of each month\n",
|
682 |
+
"english_counts = Counter(months_english)\n",
|
683 |
+
"spanish_counts = Counter(months_spanish)\n",
|
684 |
+
"\n",
|
685 |
+
"# Create a DataFrame for English datasets\n",
|
686 |
+
"df_english = pd.DataFrame.from_dict(english_counts, orient='index', columns=['English'])\n",
|
687 |
+
"df_english.index = pd.MultiIndex.from_tuples(df_english.index, names=['Year', 'Month'])\n",
|
688 |
+
"df_english = df_english.sort_index()\n",
|
689 |
+
"\n",
|
690 |
+
"# Create a DataFrame for Spanish datasets\n",
|
691 |
+
"df_spanish = pd.DataFrame.from_dict(spanish_counts, orient='index', columns=['Spanish'])\n",
|
692 |
+
"df_spanish.index = pd.MultiIndex.from_tuples(df_spanish.index, names=['Year', 'Month'])\n",
|
693 |
+
"df_spanish = df_spanish.sort_index()\n",
|
694 |
+
"\n",
|
695 |
+
"# Merge the DataFrames\n",
|
696 |
+
"df = pd.merge(df_english, df_spanish, how='outer', left_index=True, right_index=True).fillna(0)\n",
|
697 |
+
"\n",
|
698 |
+
"# Convert index to datetime\n",
|
699 |
+
"df.index = pd.to_datetime(df.index.map(lambda x: f'{x[0]}-{x[1]}'))\n",
|
700 |
+
"\n",
|
701 |
+
"# Calculate cumulative sum\n",
|
702 |
+
"df_cumulative = df.cumsum()\n",
|
703 |
+
"\n",
|
704 |
+
"# Plotting the cumulative chart\n",
|
705 |
+
"plt.figure(figsize=(10, 6))\n",
|
706 |
+
"plt.plot(df_cumulative.index, df_cumulative['English'], label='English', color='blue')\n",
|
707 |
+
"plt.plot(df_cumulative.index, df_cumulative['Spanish'], label='Spanish', color='orange')\n",
|
708 |
+
"\n",
|
709 |
+
"# Adding labels and title\n",
|
710 |
+
"plt.xlabel('Date')\n",
|
711 |
+
"plt.ylabel('Cumulative Number of Datasets')\n",
|
712 |
+
"plt.title('Cumulative Growth of Monolingual English and Spanish Datasets Over Time')\n",
|
713 |
+
"\n",
|
714 |
+
"# Display the plot\n",
|
715 |
+
"plt.xticks(rotation=45)\n",
|
716 |
+
"plt.legend(loc='upper left')\n",
|
717 |
+
"plt.grid(True)\n",
|
718 |
+
"plt.tight_layout()\n",
|
719 |
+
"plt.show()\n"
|
720 |
+
]
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"cell_type": "code",
|
724 |
+
"execution_count": null,
|
725 |
+
"metadata": {
|
726 |
+
"id": "KG__of2IfdHu"
|
727 |
+
},
|
728 |
+
"outputs": [],
|
729 |
+
"source": [
|
730 |
+
"import matplotlib.pyplot as plt\n",
|
731 |
+
"import pandas as pd\n",
|
732 |
+
"from collections import Counter\n",
|
733 |
+
"\n",
|
734 |
+
"# Sample data (replace with your actual data)\n",
|
735 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
736 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
737 |
+
"\n",
|
738 |
+
"# Extract years from the creation dates\n",
|
739 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
740 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
741 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
742 |
+
"\n",
|
743 |
+
"# Prepare data for plotting\n",
|
744 |
+
"english_series = pd.Series([english_counts[year] for year in years], index=years)\n",
|
745 |
+
"spanish_series = pd.Series([spanish_counts[year] for year in years], index=years)\n",
|
746 |
+
"\n",
|
747 |
+
"# Plotting the time series\n",
|
748 |
+
"plt.figure(figsize=(10, 6))\n",
|
749 |
+
"plt.plot(english_series.index, english_series.values, label='English', color='blue')\n",
|
750 |
+
"plt.plot(spanish_series.index, spanish_series.values, label='Spanish', color='orange')\n",
|
751 |
+
"\n",
|
752 |
+
"# Adding labels and title\n",
|
753 |
+
"plt.title('Evolution of English and Spanish Datasets Over Time')\n",
|
754 |
+
"plt.xlabel('Year')\n",
|
755 |
+
"plt.ylabel('Number of Datasets')\n",
|
756 |
+
"plt.legend()\n",
|
757 |
+
"plt.grid(True)\n",
|
758 |
+
"plt.xticks(rotation=45)\n",
|
759 |
+
"plt.tight_layout()\n",
|
760 |
+
"plt.show()\n"
|
761 |
+
]
|
762 |
+
}
|
763 |
+
],
|
764 |
+
"metadata": {
|
765 |
+
"accelerator": "GPU",
|
766 |
+
"colab": {
|
767 |
+
"gpuType": "T4",
|
768 |
+
"provenance": []
|
769 |
+
},
|
770 |
+
"kernelspec": {
|
771 |
+
"display_name": "Python 3",
|
772 |
+
"name": "python3"
|
773 |
+
},
|
774 |
+
"language_info": {
|
775 |
+
"name": "python",
|
776 |
+
"version": "3.11.6"
|
777 |
+
}
|
778 |
+
},
|
779 |
+
"nbformat": 4,
|
780 |
+
"nbformat_minor": 0
|
781 |
+
}
|
numero_datasets_hub_output.ipynb
ADDED
@@ -0,0 +1,918 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "9b494ecb",
|
7 |
+
"metadata": {
|
8 |
+
"colab": {
|
9 |
+
"base_uri": "https://localhost:8080/"
|
10 |
+
},
|
11 |
+
"id": "bCPvBCk_VLoi",
|
12 |
+
"outputId": "48174b27-072f-4cf9-bfcc-2a7cb12f60ba",
|
13 |
+
"papermill": {
|
14 |
+
"duration": null,
|
15 |
+
"end_time": null,
|
16 |
+
"exception": null,
|
17 |
+
"start_time": null,
|
18 |
+
"status": "completed"
|
19 |
+
},
|
20 |
+
"tags": []
|
21 |
+
},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"!pip install huggingface_hub"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"id": "d736660e",
|
31 |
+
"metadata": {
|
32 |
+
"id": "NbQeXxudVJW9",
|
33 |
+
"papermill": {
|
34 |
+
"duration": null,
|
35 |
+
"end_time": null,
|
36 |
+
"exception": null,
|
37 |
+
"start_time": null,
|
38 |
+
"status": "completed"
|
39 |
+
},
|
40 |
+
"tags": []
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"from datetime import datetime\n",
|
45 |
+
"\n",
|
46 |
+
"import matplotlib.pyplot as plt\n",
|
47 |
+
"import pandas as pd\n",
|
48 |
+
"from huggingface_hub import HfApi\n"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": null,
|
54 |
+
"id": "8dc1a8d8",
|
55 |
+
"metadata": {
|
56 |
+
"colab": {
|
57 |
+
"base_uri": "https://localhost:8080/"
|
58 |
+
},
|
59 |
+
"id": "ogyTHBYJVZ8I",
|
60 |
+
"outputId": "f23a554a-7328-4e50-d87c-90368294467d",
|
61 |
+
"papermill": {
|
62 |
+
"duration": null,
|
63 |
+
"end_time": null,
|
64 |
+
"exception": null,
|
65 |
+
"start_time": null,
|
66 |
+
"status": "completed"
|
67 |
+
},
|
68 |
+
"tags": []
|
69 |
+
},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"hf_api = HfApi()\n",
|
73 |
+
"\n",
|
74 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
75 |
+
"\n",
|
76 |
+
"total_count = len(list(all_datasets))\n",
|
77 |
+
"print(total_count)"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"id": "299e6d56",
|
84 |
+
"metadata": {
|
85 |
+
"id": "GXDMUU-4XmaI",
|
86 |
+
"papermill": {
|
87 |
+
"duration": null,
|
88 |
+
"end_time": null,
|
89 |
+
"exception": null,
|
90 |
+
"start_time": null,
|
91 |
+
"status": "completed"
|
92 |
+
},
|
93 |
+
"tags": []
|
94 |
+
},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"# language_filter = filter(lambda dataset: 'language:es' in dataset.tags, all_datasets) # 882\n",
|
98 |
+
"\n",
|
99 |
+
"# spanish_filter = filter(lambda d: \"language:es\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:es\" for tag in d.tags), all_datasets) # 317\n",
|
100 |
+
"\n",
|
101 |
+
"#filtered_datasets_2 = filter(lambda dataset: \"es\" in dataset.card_data.language, all_datasets) # 882\n",
|
102 |
+
"\n",
|
103 |
+
"#filtered_datasets_3 = filter(lambda dataset: dataset.card_data.language == [\"es\"], all_datasets) #\n",
|
104 |
+
"\n",
|
105 |
+
"#for dataset in spanish_only_datasets:\n",
|
106 |
+
"# print(dataset)\n",
|
107 |
+
"# break"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": null,
|
113 |
+
"id": "691d8f3a",
|
114 |
+
"metadata": {
|
115 |
+
"colab": {
|
116 |
+
"base_uri": "https://localhost:8080/"
|
117 |
+
},
|
118 |
+
"id": "pjCvHVq_hChx",
|
119 |
+
"outputId": "d279d0bc-a3c6-4994-f23c-a7274b1f4ee8",
|
120 |
+
"papermill": {
|
121 |
+
"duration": null,
|
122 |
+
"end_time": null,
|
123 |
+
"exception": null,
|
124 |
+
"start_time": null,
|
125 |
+
"status": "completed"
|
126 |
+
},
|
127 |
+
"tags": []
|
128 |
+
},
|
129 |
+
"outputs": [],
|
130 |
+
"source": [
|
131 |
+
"hf_api = HfApi()\n",
|
132 |
+
"\n",
|
133 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
134 |
+
"\n",
|
135 |
+
"spanish_filter = filter(lambda d: \"language:es\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:es\" for tag in d.tags), all_datasets) # 317\n",
|
136 |
+
"spanish_datasets = list(spanish_filter)\n",
|
137 |
+
"spanish_count = len(list(spanish_datasets))\n",
|
138 |
+
"print(spanish_count)\n"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"id": "c9676c89",
|
145 |
+
"metadata": {
|
146 |
+
"colab": {
|
147 |
+
"base_uri": "https://localhost:8080/"
|
148 |
+
},
|
149 |
+
"id": "WANGkTpGRw8t",
|
150 |
+
"outputId": "da8931bf-7ae2-438d-8188-20190f568193",
|
151 |
+
"papermill": {
|
152 |
+
"duration": null,
|
153 |
+
"end_time": null,
|
154 |
+
"exception": null,
|
155 |
+
"start_time": null,
|
156 |
+
"status": "completed"
|
157 |
+
},
|
158 |
+
"tags": []
|
159 |
+
},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"hf_api = HfApi()\n",
|
163 |
+
"\n",
|
164 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
165 |
+
"\n",
|
166 |
+
"english_filter = filter(lambda d: \"language:en\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:en\" for tag in d.tags), all_datasets)\n",
|
167 |
+
"english_datasets = list(english_filter)\n",
|
168 |
+
"english_count = len(list(english_datasets))\n",
|
169 |
+
"print(english_count)"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": null,
|
175 |
+
"id": "bf300ce6",
|
176 |
+
"metadata": {
|
177 |
+
"colab": {
|
178 |
+
"base_uri": "https://localhost:8080/"
|
179 |
+
},
|
180 |
+
"id": "yPtF0G7SWS53",
|
181 |
+
"outputId": "a2a51160-c803-4e7f-a6dc-8879eea1dd69",
|
182 |
+
"papermill": {
|
183 |
+
"duration": null,
|
184 |
+
"end_time": null,
|
185 |
+
"exception": null,
|
186 |
+
"start_time": null,
|
187 |
+
"status": "completed"
|
188 |
+
},
|
189 |
+
"tags": []
|
190 |
+
},
|
191 |
+
"outputs": [],
|
192 |
+
"source": [
|
193 |
+
"hf_api = HfApi()\n",
|
194 |
+
"\n",
|
195 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
196 |
+
"\n",
|
197 |
+
"chinese_filter = filter(lambda d: \"language:zh\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:zh\" for tag in d.tags), all_datasets)\n",
|
198 |
+
"chinese_datasets = list(chinese_filter)\n",
|
199 |
+
"chinese_count = len(list(chinese_datasets))\n",
|
200 |
+
"print(chinese_count)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": null,
|
206 |
+
"id": "407c46fc",
|
207 |
+
"metadata": {
|
208 |
+
"colab": {
|
209 |
+
"base_uri": "https://localhost:8080/"
|
210 |
+
},
|
211 |
+
"id": "RlxAlOOsW7p9",
|
212 |
+
"outputId": "f1c12edd-5502-4018-b9a7-149f9fc29322",
|
213 |
+
"papermill": {
|
214 |
+
"duration": null,
|
215 |
+
"end_time": null,
|
216 |
+
"exception": null,
|
217 |
+
"start_time": null,
|
218 |
+
"status": "completed"
|
219 |
+
},
|
220 |
+
"tags": []
|
221 |
+
},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"hf_api = HfApi()\n",
|
225 |
+
"\n",
|
226 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
227 |
+
"\n",
|
228 |
+
"french_filter = filter(lambda d: \"language:fr\" in d.tags and not any(tag.startswith(\"language:\") and tag != \"language:fr\" for tag in d.tags), all_datasets)\n",
|
229 |
+
"french_datasets = list(french_filter)\n",
|
230 |
+
"french_count = len(list(french_datasets))\n",
|
231 |
+
"print(french_count)"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"execution_count": null,
|
237 |
+
"id": "a7d82d5d",
|
238 |
+
"metadata": {
|
239 |
+
"colab": {
|
240 |
+
"base_uri": "https://localhost:8080/"
|
241 |
+
},
|
242 |
+
"id": "OMQfBXjUYBPz",
|
243 |
+
"outputId": "8cd3fdb9-0bc8-4d82-d25b-fb9eef7118ed",
|
244 |
+
"papermill": {
|
245 |
+
"duration": null,
|
246 |
+
"end_time": null,
|
247 |
+
"exception": null,
|
248 |
+
"start_time": null,
|
249 |
+
"status": "completed"
|
250 |
+
},
|
251 |
+
"tags": []
|
252 |
+
},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"hf_api = HfApi()\n",
|
256 |
+
"\n",
|
257 |
+
"all_datasets = hf_api.list_datasets(full=True)\n",
|
258 |
+
"\n",
|
259 |
+
"mono_filter = filter(lambda dataset: sum(tag.startswith('language:') for tag in dataset.tags) == 1, all_datasets)\n",
|
260 |
+
"mono_datasets = list(mono_filter)\n",
|
261 |
+
"mono_count = len(list(mono_datasets))\n",
|
262 |
+
"print(mono_count)"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"id": "6dc0ac68",
|
269 |
+
"metadata": {
|
270 |
+
"colab": {
|
271 |
+
"base_uri": "https://localhost:8080/",
|
272 |
+
"height": 180
|
273 |
+
},
|
274 |
+
"id": "sTPechkdWmYS",
|
275 |
+
"outputId": "bb49f9f4-150b-4a29-d58e-faff4f88cce3",
|
276 |
+
"papermill": {
|
277 |
+
"duration": null,
|
278 |
+
"end_time": null,
|
279 |
+
"exception": null,
|
280 |
+
"start_time": null,
|
281 |
+
"status": "completed"
|
282 |
+
},
|
283 |
+
"tags": []
|
284 |
+
},
|
285 |
+
"outputs": [],
|
286 |
+
"source": [
|
287 |
+
"# Extract creation date\n",
|
288 |
+
"\n",
|
289 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
290 |
+
"assert len(creation_dates_spanish) == 318\n",
|
291 |
+
"\n",
|
292 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
293 |
+
"assert len(creation_dates_english) == 8336"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": null,
|
299 |
+
"id": "57d206ec",
|
300 |
+
"metadata": {
|
301 |
+
"id": "hefZVynDSjjE",
|
302 |
+
"papermill": {
|
303 |
+
"duration": null,
|
304 |
+
"end_time": null,
|
305 |
+
"exception": null,
|
306 |
+
"start_time": null,
|
307 |
+
"status": "completed"
|
308 |
+
},
|
309 |
+
"tags": []
|
310 |
+
},
|
311 |
+
"outputs": [],
|
312 |
+
"source": [
|
313 |
+
"print(creation_dates_spanish[0])"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "markdown",
|
318 |
+
"id": "b80e411d",
|
319 |
+
"metadata": {
|
320 |
+
"id": "aFaEBlkkSbrs",
|
321 |
+
"papermill": {
|
322 |
+
"duration": null,
|
323 |
+
"end_time": null,
|
324 |
+
"exception": null,
|
325 |
+
"start_time": null,
|
326 |
+
"status": "completed"
|
327 |
+
},
|
328 |
+
"tags": []
|
329 |
+
},
|
330 |
+
"source": [
|
331 |
+
"## Bar Chart\n",
|
332 |
+
"\n"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"execution_count": null,
|
338 |
+
"id": "96652421",
|
339 |
+
"metadata": {
|
340 |
+
"id": "dYJ2zd4dShYh",
|
341 |
+
"papermill": {
|
342 |
+
"duration": null,
|
343 |
+
"end_time": null,
|
344 |
+
"exception": null,
|
345 |
+
"start_time": null,
|
346 |
+
"status": "completed"
|
347 |
+
},
|
348 |
+
"tags": []
|
349 |
+
},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"import matplotlib.pyplot as plt\n",
|
353 |
+
"from collections import Counter\n",
|
354 |
+
"\n",
|
355 |
+
"# Sample data (replace with your actual data)\n",
|
356 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
357 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
358 |
+
"\n",
|
359 |
+
"# Extract years from the creation dates\n",
|
360 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
361 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
362 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
363 |
+
"\n",
|
364 |
+
"# Plotting the bar chart\n",
|
365 |
+
"plt.figure(figsize=(10, 6))\n",
|
366 |
+
"plt.bar(years, [english_counts[year] for year in years], width=0.4, label='English Datasets', color='blue')\n",
|
367 |
+
"plt.bar(years, [spanish_counts[year] for year in years], width=0.4, label='Spanish Datasets', color='orange', bottom=[english_counts[year] for year in years])\n",
|
368 |
+
"\n",
|
369 |
+
"# Adding labels and title\n",
|
370 |
+
"plt.xlabel('Year')\n",
|
371 |
+
"plt.ylabel('Number of Datasets')\n",
|
372 |
+
"plt.title('Distribution of Monolingual English and Spanish Datasets by Year')\n",
|
373 |
+
"plt.xticks(years)\n",
|
374 |
+
"plt.legend()\n",
|
375 |
+
"\n",
|
376 |
+
"# Display the plot\n",
|
377 |
+
"plt.grid(True)\n",
|
378 |
+
"plt.tight_layout()\n",
|
379 |
+
"plt.show()\n",
|
380 |
+
"plt.savefig(\"plots/bar_stack.png\")\n"
|
381 |
+
]
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "code",
|
385 |
+
"execution_count": null,
|
386 |
+
"id": "2d1ae015",
|
387 |
+
"metadata": {
|
388 |
+
"id": "wViEE4wCUVgs",
|
389 |
+
"papermill": {
|
390 |
+
"duration": null,
|
391 |
+
"end_time": null,
|
392 |
+
"exception": null,
|
393 |
+
"start_time": null,
|
394 |
+
"status": "completed"
|
395 |
+
},
|
396 |
+
"tags": []
|
397 |
+
},
|
398 |
+
"outputs": [],
|
399 |
+
"source": [
|
400 |
+
"import matplotlib.pyplot as plt\n",
|
401 |
+
"import numpy as np\n",
|
402 |
+
"from collections import Counter\n",
|
403 |
+
"\n",
|
404 |
+
"# Sample data (replace with your actual data)\n",
|
405 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
406 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
407 |
+
"\n",
|
408 |
+
"# Extract years from the creation dates\n",
|
409 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
410 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
411 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
412 |
+
"\n",
|
413 |
+
"# Define the width of each bar\n",
|
414 |
+
"bar_width = 0.4\n",
|
415 |
+
"\n",
|
416 |
+
"# Define the x-coordinates for the bars\n",
|
417 |
+
"years_index = np.arange(len(years))\n",
|
418 |
+
"\n",
|
419 |
+
"# Plotting the side-by-side bar chart\n",
|
420 |
+
"plt.figure(figsize=(10, 6))\n",
|
421 |
+
"plt.bar(years_index - bar_width/2, [english_counts[year] for year in years], width=bar_width, label='English Datasets', color='blue')\n",
|
422 |
+
"plt.bar(years_index + bar_width/2, [spanish_counts[year] for year in years], width=bar_width, label='Spanish Datasets', color='orange')\n",
|
423 |
+
"\n",
|
424 |
+
"# Adding labels and title\n",
|
425 |
+
"plt.xlabel('Year')\n",
|
426 |
+
"plt.ylabel('Number of Datasets')\n",
|
427 |
+
"plt.title('Distribution of Monolingual English and Spanish Datasets by Year')\n",
|
428 |
+
"plt.xticks(years_index, years)\n",
|
429 |
+
"plt.legend()\n",
|
430 |
+
"\n",
|
431 |
+
"# Display the plot\n",
|
432 |
+
"plt.grid(True)\n",
|
433 |
+
"plt.tight_layout()\n",
|
434 |
+
"plt.show()\n",
|
435 |
+
"plt.savefig(\"plots/bar_width.png\")"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "markdown",
|
440 |
+
"id": "cddf7237",
|
441 |
+
"metadata": {
|
442 |
+
"id": "Hp8vNA6LUA1E",
|
443 |
+
"papermill": {
|
444 |
+
"duration": null,
|
445 |
+
"end_time": null,
|
446 |
+
"exception": null,
|
447 |
+
"start_time": null,
|
448 |
+
"status": "completed"
|
449 |
+
},
|
450 |
+
"tags": []
|
451 |
+
},
|
452 |
+
"source": [
|
453 |
+
"# Stacked Area Chart\n"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "code",
|
458 |
+
"execution_count": null,
|
459 |
+
"id": "68255399",
|
460 |
+
"metadata": {
|
461 |
+
"id": "CWgCunzGUCot",
|
462 |
+
"papermill": {
|
463 |
+
"duration": null,
|
464 |
+
"end_time": null,
|
465 |
+
"exception": null,
|
466 |
+
"start_time": null,
|
467 |
+
"status": "completed"
|
468 |
+
},
|
469 |
+
"tags": []
|
470 |
+
},
|
471 |
+
"outputs": [],
|
472 |
+
"source": [
|
473 |
+
"import matplotlib.pyplot as plt\n",
|
474 |
+
"from collections import Counter\n",
|
475 |
+
"\n",
|
476 |
+
"# Sample data (replace with your actual data)\n",
|
477 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
478 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
479 |
+
"\n",
|
480 |
+
"# Extract years from the creation dates\n",
|
481 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
482 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
483 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
484 |
+
"\n",
|
485 |
+
"# Calculate cumulative counts\n",
|
486 |
+
"english_datasets_cumulative = [english_counts[year] for year in years]\n",
|
487 |
+
"spanish_datasets_cumulative = [spanish_counts[year] for year in years]\n",
|
488 |
+
"for i in range(1, len(years)):\n",
|
489 |
+
" english_datasets_cumulative[i] += english_datasets_cumulative[i-1]\n",
|
490 |
+
" spanish_datasets_cumulative[i] += spanish_datasets_cumulative[i-1]\n",
|
491 |
+
"\n",
|
492 |
+
"# Plotting the stacked area chart\n",
|
493 |
+
"plt.figure(figsize=(10, 6))\n",
|
494 |
+
"plt.stackplot(years, english_datasets_cumulative, spanish_datasets_cumulative, labels=['English Datasets', 'Spanish Datasets'], colors=['blue', 'orange'])\n",
|
495 |
+
"\n",
|
496 |
+
"# Adding labels and title\n",
|
497 |
+
"plt.xlabel('Year')\n",
|
498 |
+
"plt.ylabel('Cumulative Number of Datasets')\n",
|
499 |
+
"plt.title('Cumulative Growth of Monolingual English and Spanish Datasets Over Time')\n",
|
500 |
+
"plt.xticks(years)\n",
|
501 |
+
"plt.legend(loc='upper left')\n",
|
502 |
+
"\n",
|
503 |
+
"# Display the plot\n",
|
504 |
+
"plt.grid(True)\n",
|
505 |
+
"plt.tight_layout()\n",
|
506 |
+
"plt.show()\n",
|
507 |
+
"\n",
|
508 |
+
"plt.savefig(\"plots/stack_area_1.png\")"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"cell_type": "code",
|
513 |
+
"execution_count": null,
|
514 |
+
"id": "4ba74cf5",
|
515 |
+
"metadata": {
|
516 |
+
"id": "GwRpZwYWhau3",
|
517 |
+
"papermill": {
|
518 |
+
"duration": null,
|
519 |
+
"end_time": null,
|
520 |
+
"exception": null,
|
521 |
+
"start_time": null,
|
522 |
+
"status": "completed"
|
523 |
+
},
|
524 |
+
"tags": []
|
525 |
+
},
|
526 |
+
"outputs": [],
|
527 |
+
"source": [
|
528 |
+
"import matplotlib.pyplot as plt\n",
|
529 |
+
"import pandas as pd\n",
|
530 |
+
"from collections import Counter\n",
|
531 |
+
"\n",
|
532 |
+
"# Sample data (replace with your actual data)\n",
|
533 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
534 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
535 |
+
"\n",
|
536 |
+
"# Extract months from the creation dates\n",
|
537 |
+
"months_english = [(date.year, date.month) for date in creation_dates_english]\n",
|
538 |
+
"months_spanish = [(date.year, date.month) for date in creation_dates_spanish]\n",
|
539 |
+
"\n",
|
540 |
+
"# Count the occurrences of each month\n",
|
541 |
+
"english_counts = Counter(months_english)\n",
|
542 |
+
"spanish_counts = Counter(months_spanish)\n",
|
543 |
+
"\n",
|
544 |
+
"# Create a DataFrame for English datasets\n",
|
545 |
+
"df_english = pd.DataFrame.from_dict(english_counts, orient='index', columns=['English'])\n",
|
546 |
+
"df_english.index = pd.MultiIndex.from_tuples(df_english.index, names=['Year', 'Month'])\n",
|
547 |
+
"df_english = df_english.sort_index()\n",
|
548 |
+
"\n",
|
549 |
+
"# Create a DataFrame for Spanish datasets\n",
|
550 |
+
"df_spanish = pd.DataFrame.from_dict(spanish_counts, orient='index', columns=['Spanish'])\n",
|
551 |
+
"df_spanish.index = pd.MultiIndex.from_tuples(df_spanish.index, names=['Year', 'Month'])\n",
|
552 |
+
"df_spanish = df_spanish.sort_index()\n",
|
553 |
+
"\n",
|
554 |
+
"# Merge the DataFrames\n",
|
555 |
+
"df = pd.merge(df_english, df_spanish, how='outer', left_index=True, right_index=True).fillna(0)\n",
|
556 |
+
"\n",
|
557 |
+
"# Convert index to datetime\n",
|
558 |
+
"df.index = pd.to_datetime(df.index.map(lambda x: f'{x[0]}-{x[1]}'))\n",
|
559 |
+
"\n",
|
560 |
+
"# Calculate cumulative sum\n",
|
561 |
+
"df_cumulative = df.cumsum()\n",
|
562 |
+
"\n",
|
563 |
+
"# Plotting the stacked area chart\n",
|
564 |
+
"plt.figure(figsize=(8, 5))\n",
|
565 |
+
"plt.stackplot(df_cumulative.index, df_cumulative['English'], df_cumulative['Spanish'], labels=['English', 'Spanish'], colors=['orange', 'blue'])\n",
|
566 |
+
"\n",
|
567 |
+
"# Adding labels and title\n",
|
568 |
+
"plt.xlabel('Creation date')\n",
|
569 |
+
"plt.ylabel('Cumulative number of monolingual datasets')\n",
|
570 |
+
"plt.title('Cumulative growth of monolingual English and Spanish datasets in the Hugging Face Hub over time')\n",
|
571 |
+
"\n",
|
572 |
+
"# Display the plot\n",
|
573 |
+
"plt.xticks(rotation=45)\n",
|
574 |
+
"plt.legend(loc='upper left')\n",
|
575 |
+
"plt.grid(False)\n",
|
576 |
+
"plt.tight_layout()\n",
|
577 |
+
"plt.show()\n",
|
578 |
+
"\n",
|
579 |
+
"plt.savefig(\"plots/stack_area_2.png\")"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "code",
|
584 |
+
"execution_count": null,
|
585 |
+
"id": "d96225ce",
|
586 |
+
"metadata": {
|
587 |
+
"id": "kJQ0OgRtglOQ",
|
588 |
+
"papermill": {
|
589 |
+
"duration": null,
|
590 |
+
"end_time": null,
|
591 |
+
"exception": null,
|
592 |
+
"start_time": null,
|
593 |
+
"status": "completed"
|
594 |
+
},
|
595 |
+
"tags": []
|
596 |
+
},
|
597 |
+
"outputs": [],
|
598 |
+
"source": [
|
599 |
+
"import matplotlib.pyplot as plt\n",
|
600 |
+
"import pandas as pd\n",
|
601 |
+
"from collections import Counter\n",
|
602 |
+
"\n",
|
603 |
+
"# Sample data (replace with your actual data)\n",
|
604 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
605 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
606 |
+
"\n",
|
607 |
+
"# Extract months from the creation dates\n",
|
608 |
+
"months_english = [(date.year, date.month) for date in creation_dates_english]\n",
|
609 |
+
"months_spanish = [(date.year, date.month) for date in creation_dates_spanish]\n",
|
610 |
+
"\n",
|
611 |
+
"# Count the occurrences of each month\n",
|
612 |
+
"english_counts = Counter(months_english)\n",
|
613 |
+
"spanish_counts = Counter(months_spanish)\n",
|
614 |
+
"\n",
|
615 |
+
"# Create a DataFrame for English datasets\n",
|
616 |
+
"df_english = pd.DataFrame.from_dict(english_counts, orient='index', columns=['English'])\n",
|
617 |
+
"df_english.index = pd.MultiIndex.from_tuples(df_english.index, names=['Year', 'Month'])\n",
|
618 |
+
"df_english = df_english.sort_index()\n",
|
619 |
+
"\n",
|
620 |
+
"# Create a DataFrame for Spanish datasets\n",
|
621 |
+
"df_spanish = pd.DataFrame.from_dict(spanish_counts, orient='index', columns=['Spanish'])\n",
|
622 |
+
"df_spanish.index = pd.MultiIndex.from_tuples(df_spanish.index, names=['Year', 'Month'])\n",
|
623 |
+
"df_spanish = df_spanish.sort_index()\n",
|
624 |
+
"\n",
|
625 |
+
"# Merge the DataFrames\n",
|
626 |
+
"df = pd.merge(df_english, df_spanish, how='outer', left_index=True, right_index=True).fillna(0)\n",
|
627 |
+
"\n",
|
628 |
+
"# Convert index to datetime\n",
|
629 |
+
"df.index = pd.to_datetime(df.index.map(lambda x: f'{x[0]}-{x[1]}'))\n",
|
630 |
+
"\n",
|
631 |
+
"# Plotting the stacked area chart\n",
|
632 |
+
"plt.figure(figsize=(10, 6))\n",
|
633 |
+
"plt.stackplot(df.index, df['English'], df['Spanish'], labels=['English Datasets', 'Spanish Datasets'], colors=['blue', 'orange'])\n",
|
634 |
+
"\n",
|
635 |
+
"# Adding labels and title\n",
|
636 |
+
"plt.xlabel('Date')\n",
|
637 |
+
"plt.ylabel('Cumulative Number of Datasets')\n",
|
638 |
+
"plt.title('Cumulative Growth of Monolingual English and Spanish Datasets Over Time')\n",
|
639 |
+
"\n",
|
640 |
+
"# Display the plot\n",
|
641 |
+
"plt.xticks(rotation=45)\n",
|
642 |
+
"plt.legend(loc='upper left')\n",
|
643 |
+
"plt.grid(True)\n",
|
644 |
+
"plt.tight_layout()\n",
|
645 |
+
"plt.show()\n",
|
646 |
+
"\n",
|
647 |
+
"plt.savefig(\"plots/stack_area_3.png\")"
|
648 |
+
]
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"cell_type": "markdown",
|
652 |
+
"id": "7bbec0ac",
|
653 |
+
"metadata": {
|
654 |
+
"id": "IAnFHiPlgnRE",
|
655 |
+
"papermill": {
|
656 |
+
"duration": null,
|
657 |
+
"end_time": null,
|
658 |
+
"exception": null,
|
659 |
+
"start_time": null,
|
660 |
+
"status": "completed"
|
661 |
+
},
|
662 |
+
"tags": []
|
663 |
+
},
|
664 |
+
"source": [
|
665 |
+
"## Pie Chart"
|
666 |
+
]
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"cell_type": "code",
|
670 |
+
"execution_count": null,
|
671 |
+
"id": "7c3dd684",
|
672 |
+
"metadata": {
|
673 |
+
"id": "8tKR1x-kVeZT",
|
674 |
+
"papermill": {
|
675 |
+
"duration": null,
|
676 |
+
"end_time": null,
|
677 |
+
"exception": null,
|
678 |
+
"start_time": null,
|
679 |
+
"status": "completed"
|
680 |
+
},
|
681 |
+
"tags": []
|
682 |
+
},
|
683 |
+
"outputs": [],
|
684 |
+
"source": [
|
685 |
+
"import matplotlib.pyplot as plt\n",
|
686 |
+
"from collections import Counter\n",
|
687 |
+
"\n",
|
688 |
+
"# Calculate the count of \"other\" datasets\n",
|
689 |
+
"other_count = mono_count - (english_count + spanish_count + chinese_count + french_count)\n",
|
690 |
+
"\n",
|
691 |
+
"# Pie chart data\n",
|
692 |
+
"labels = ['English', 'Chinese', 'French', 'Spanish', 'Other']\n",
|
693 |
+
"sizes = [english_count, chinese_count, french_count, spanish_count, other_count]\n",
|
694 |
+
"\n",
|
695 |
+
"# Plotting the pie chart\n",
|
696 |
+
"plt.figure(figsize=(8, 8))\n",
|
697 |
+
"plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=180, colors=['blue', 'red', 'green', 'orange', 'purple'])\n",
|
698 |
+
"plt.title('Distribution of Monolingual Datasets by Language')\n",
|
699 |
+
"plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.\n",
|
700 |
+
"\n",
|
701 |
+
"# Display the plot\n",
|
702 |
+
"plt.show()\n",
|
703 |
+
"\n",
|
704 |
+
"plt.savefig(\"plots/pie_chart.png\")"
|
705 |
+
]
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"cell_type": "markdown",
|
709 |
+
"id": "11c1c9c8",
|
710 |
+
"metadata": {
|
711 |
+
"id": "z2xf8FrHROxy",
|
712 |
+
"papermill": {
|
713 |
+
"duration": null,
|
714 |
+
"end_time": null,
|
715 |
+
"exception": null,
|
716 |
+
"start_time": null,
|
717 |
+
"status": "completed"
|
718 |
+
},
|
719 |
+
"tags": []
|
720 |
+
},
|
721 |
+
"source": [
|
722 |
+
"# Time series plot"
|
723 |
+
]
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"cell_type": "code",
|
727 |
+
"execution_count": null,
|
728 |
+
"id": "1bb6a676",
|
729 |
+
"metadata": {
|
730 |
+
"id": "DuPFSZKUhyQj",
|
731 |
+
"papermill": {
|
732 |
+
"duration": null,
|
733 |
+
"end_time": null,
|
734 |
+
"exception": null,
|
735 |
+
"start_time": null,
|
736 |
+
"status": "completed"
|
737 |
+
},
|
738 |
+
"tags": []
|
739 |
+
},
|
740 |
+
"outputs": [],
|
741 |
+
"source": [
|
742 |
+
"# Prepare data for plotting\n",
|
743 |
+
"\n",
|
744 |
+
"df = pd.DataFrame(creation_dates_spanish, columns=[\"Date\"])\n",
|
745 |
+
"df[\"Count\"] = 1\n",
|
746 |
+
"# Ensure the 'Date' column is of type datetime\n",
|
747 |
+
"df['Date'] = pd.to_datetime(df['Date'])\n",
|
748 |
+
"# Group by month and calculate cumulative sum\n",
|
749 |
+
"df = df.groupby(pd.Grouper(key=\"Date\", freq=\"MS\")).sum().cumsum()\n",
|
750 |
+
"\n",
|
751 |
+
"# Plot the data\n",
|
752 |
+
"plt.figure(figsize=(10, 6))\n",
|
753 |
+
"plt.plot(\n",
|
754 |
+
" df.index,\n",
|
755 |
+
" df[\"Count\"],\n",
|
756 |
+
" #marker=\"o\",\n",
|
757 |
+
" color=\"g\"\n",
|
758 |
+
")\n",
|
759 |
+
"plt.title(\"Evolución de bases de datos monolingües en español\")\n",
|
760 |
+
"plt.xlabel(\"Fecha\")\n",
|
761 |
+
"plt.ylabel(\"Número de bases de datos\")\n",
|
762 |
+
"plt.grid(True)\n",
|
763 |
+
"plt.xticks(rotation=45)\n",
|
764 |
+
"plt.tight_layout()\n",
|
765 |
+
"plt.show()"
|
766 |
+
]
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"cell_type": "code",
|
770 |
+
"execution_count": null,
|
771 |
+
"id": "2fc77d7f",
|
772 |
+
"metadata": {
|
773 |
+
"id": "-Vu3PIe2hITq",
|
774 |
+
"papermill": {
|
775 |
+
"duration": null,
|
776 |
+
"end_time": null,
|
777 |
+
"exception": null,
|
778 |
+
"start_time": null,
|
779 |
+
"status": "completed"
|
780 |
+
},
|
781 |
+
"tags": []
|
782 |
+
},
|
783 |
+
"outputs": [],
|
784 |
+
"source": [
|
785 |
+
"import matplotlib.pyplot as plt\n",
|
786 |
+
"import pandas as pd\n",
|
787 |
+
"from collections import Counter\n",
|
788 |
+
"\n",
|
789 |
+
"# Sample data (replace with your actual data)\n",
|
790 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
791 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
792 |
+
"\n",
|
793 |
+
"# Extract months from the creation dates\n",
|
794 |
+
"months_english = [(date.year, date.month) for date in creation_dates_english]\n",
|
795 |
+
"months_spanish = [(date.year, date.month) for date in creation_dates_spanish]\n",
|
796 |
+
"\n",
|
797 |
+
"# Count the occurrences of each month\n",
|
798 |
+
"english_counts = Counter(months_english)\n",
|
799 |
+
"spanish_counts = Counter(months_spanish)\n",
|
800 |
+
"\n",
|
801 |
+
"# Create a DataFrame for English datasets\n",
|
802 |
+
"df_english = pd.DataFrame.from_dict(english_counts, orient='index', columns=['English'])\n",
|
803 |
+
"df_english.index = pd.MultiIndex.from_tuples(df_english.index, names=['Year', 'Month'])\n",
|
804 |
+
"df_english = df_english.sort_index()\n",
|
805 |
+
"\n",
|
806 |
+
"# Create a DataFrame for Spanish datasets\n",
|
807 |
+
"df_spanish = pd.DataFrame.from_dict(spanish_counts, orient='index', columns=['Spanish'])\n",
|
808 |
+
"df_spanish.index = pd.MultiIndex.from_tuples(df_spanish.index, names=['Year', 'Month'])\n",
|
809 |
+
"df_spanish = df_spanish.sort_index()\n",
|
810 |
+
"\n",
|
811 |
+
"# Merge the DataFrames\n",
|
812 |
+
"df = pd.merge(df_english, df_spanish, how='outer', left_index=True, right_index=True).fillna(0)\n",
|
813 |
+
"\n",
|
814 |
+
"# Convert index to datetime\n",
|
815 |
+
"df.index = pd.to_datetime(df.index.map(lambda x: f'{x[0]}-{x[1]}'))\n",
|
816 |
+
"\n",
|
817 |
+
"# Calculate cumulative sum\n",
|
818 |
+
"df_cumulative = df.cumsum()\n",
|
819 |
+
"\n",
|
820 |
+
"# Plotting the cumulative chart\n",
|
821 |
+
"plt.figure(figsize=(10, 6))\n",
|
822 |
+
"plt.plot(df_cumulative.index, df_cumulative['English'], label='English', color='blue')\n",
|
823 |
+
"plt.plot(df_cumulative.index, df_cumulative['Spanish'], label='Spanish', color='orange')\n",
|
824 |
+
"\n",
|
825 |
+
"# Adding labels and title\n",
|
826 |
+
"plt.xlabel('Date')\n",
|
827 |
+
"plt.ylabel('Cumulative Number of Datasets')\n",
|
828 |
+
"plt.title('Cumulative Growth of Monolingual English and Spanish Datasets Over Time')\n",
|
829 |
+
"\n",
|
830 |
+
"# Display the plot\n",
|
831 |
+
"plt.xticks(rotation=45)\n",
|
832 |
+
"plt.legend(loc='upper left')\n",
|
833 |
+
"plt.grid(True)\n",
|
834 |
+
"plt.tight_layout()\n",
|
835 |
+
"plt.show()\n"
|
836 |
+
]
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"cell_type": "code",
|
840 |
+
"execution_count": null,
|
841 |
+
"id": "6c0d23ac",
|
842 |
+
"metadata": {
|
843 |
+
"id": "KG__of2IfdHu",
|
844 |
+
"papermill": {
|
845 |
+
"duration": null,
|
846 |
+
"end_time": null,
|
847 |
+
"exception": null,
|
848 |
+
"start_time": null,
|
849 |
+
"status": "completed"
|
850 |
+
},
|
851 |
+
"tags": []
|
852 |
+
},
|
853 |
+
"outputs": [],
|
854 |
+
"source": [
|
855 |
+
"import matplotlib.pyplot as plt\n",
|
856 |
+
"import pandas as pd\n",
|
857 |
+
"from collections import Counter\n",
|
858 |
+
"\n",
|
859 |
+
"# Sample data (replace with your actual data)\n",
|
860 |
+
"creation_dates_english = [d.created_at.date() for d in english_datasets]\n",
|
861 |
+
"creation_dates_spanish = [d.created_at.date() for d in spanish_datasets]\n",
|
862 |
+
"\n",
|
863 |
+
"# Extract years from the creation dates\n",
|
864 |
+
"years = sorted(set(date.year for date in creation_dates_english + creation_dates_spanish))\n",
|
865 |
+
"english_counts = Counter(date.year for date in creation_dates_english)\n",
|
866 |
+
"spanish_counts = Counter(date.year for date in creation_dates_spanish)\n",
|
867 |
+
"\n",
|
868 |
+
"# Prepare data for plotting\n",
|
869 |
+
"english_series = pd.Series([english_counts[year] for year in years], index=years)\n",
|
870 |
+
"spanish_series = pd.Series([spanish_counts[year] for year in years], index=years)\n",
|
871 |
+
"\n",
|
872 |
+
"# Plotting the time series\n",
|
873 |
+
"plt.figure(figsize=(10, 6))\n",
|
874 |
+
"plt.plot(english_series.index, english_series.values, label='English', color='blue')\n",
|
875 |
+
"plt.plot(spanish_series.index, spanish_series.values, label='Spanish', color='orange')\n",
|
876 |
+
"\n",
|
877 |
+
"# Adding labels and title\n",
|
878 |
+
"plt.title('Evolution of English and Spanish Datasets Over Time')\n",
|
879 |
+
"plt.xlabel('Year')\n",
|
880 |
+
"plt.ylabel('Number of Datasets')\n",
|
881 |
+
"plt.legend()\n",
|
882 |
+
"plt.grid(True)\n",
|
883 |
+
"plt.xticks(rotation=45)\n",
|
884 |
+
"plt.tight_layout()\n",
|
885 |
+
"plt.show()\n"
|
886 |
+
]
|
887 |
+
}
|
888 |
+
],
|
889 |
+
"metadata": {
|
890 |
+
"accelerator": "GPU",
|
891 |
+
"colab": {
|
892 |
+
"gpuType": "T4",
|
893 |
+
"provenance": []
|
894 |
+
},
|
895 |
+
"kernelspec": {
|
896 |
+
"display_name": "Python 3",
|
897 |
+
"name": "python3"
|
898 |
+
},
|
899 |
+
"language_info": {
|
900 |
+
"name": "python",
|
901 |
+
"version": "3.11.6"
|
902 |
+
},
|
903 |
+
"papermill": {
|
904 |
+
"default_parameters": {},
|
905 |
+
"duration": 0.047858,
|
906 |
+
"end_time": "2024-05-15T09:04:29.634379",
|
907 |
+
"environment_variables": {},
|
908 |
+
"exception": null,
|
909 |
+
"input_path": "numero_datasets_hub.ipynb",
|
910 |
+
"output_path": "numero_datasets_hub_output.ipynb",
|
911 |
+
"parameters": {},
|
912 |
+
"start_time": "2024-05-15T09:04:29.586521",
|
913 |
+
"version": "2.6.0"
|
914 |
+
}
|
915 |
+
},
|
916 |
+
"nbformat": 4,
|
917 |
+
"nbformat_minor": 5
|
918 |
+
}
|
plots/datasets_hub.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.31.0
|
2 |
+
nbconvert
|
3 |
+
papermill
|