mardiek commited on
Commit
b7fd632
·
1 Parent(s): e130710

Upload 5 files

Browse files
Files changed (3) hide show
  1. app.py +2 -1
  2. eda.py +4 -1
  3. models.py +27 -39
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import eda
3
  import models
@@ -75,4 +76,4 @@ Bagaimana model prediksi ini akan diuji, divalidasi, dan dioptimalkan untuk mema
75
  elif page == 'Exploration Data Analysis':
76
  eda.run()
77
  else:
78
- models .run()
 
1
+ import numpy as np
2
  import streamlit as st
3
  import eda
4
  import models
 
76
  elif page == 'Exploration Data Analysis':
77
  eda.run()
78
  else:
79
+ models.run()
eda.py CHANGED
@@ -8,11 +8,14 @@ from PIL import Image
8
  #membuat function untuk nantinya dipanggil di app.py
9
  def run():
10
  st.title('Welcome to Explaration Data Analysis')
 
 
11
  #Memanggil data csv
12
  df= pd.read_csv(r'heart_failure.csv')
13
 
14
  #menampilakn 5 data teratas
15
- st.table(df.head(5))
 
16
 
17
 
18
  #menampilakn phik matrix
 
8
  #membuat function untuk nantinya dipanggil di app.py
9
  def run():
10
  st.title('Welcome to Explaration Data Analysis')
11
+ st.subheader ('Eda Mardi ML 2')
12
+
13
  #Memanggil data csv
14
  df= pd.read_csv(r'heart_failure.csv')
15
 
16
  #menampilakn 5 data teratas
17
+ st.table(df.head())
18
+ st.table(df.tail())
19
 
20
 
21
  #menampilakn phik matrix
models.py CHANGED
@@ -1,46 +1,34 @@
1
  import streamlit as st
2
  import pandas as pd
3
  import pickle
 
4
 
5
  def run():
6
- # Load All Files
7
-
8
- with open('best_linear_svm_model.pkl', 'rb') as file:
9
  full_process = pickle.load(file)
10
 
11
-
12
- time = np.random.randint(1,300,100)
13
- serum_creatinine = np.random.choice(['0.1','2.9'],100)
14
- ejection_fraction = np.random.randint(10,70,100)
15
-
16
- time = st.number_input(label='Silakan Masukan Waktu', min_value=0.1,max_value=0.99)
17
- serum_creatinine = st.number_input(label='Silakan Masukan serum_creatinine here', min_value=0.1,max_value=0.99)
18
- ejection_fraction = st.number_input(label='Silakan Masukan ejection_fraction here', min_value=0.1,max_value=0.99)
19
-
20
- st.write('Prediksi atas data yang Anda sampaikan adalah : ')
21
-
22
- data_inf = pd.DataFrame({
23
- 'time' : time,
24
- 'serum_creatinine' : serum_creatinine,
25
- 'ejection_fraction' : ejection_fraction ,
26
- }, index=[0])
27
-
28
- st.table(data_inf)
29
-
30
-
31
- if st.button(label='predict'):
32
-
33
- # Melakukan prediksi data dummy
34
- y_pred_inf = full_process.predict(data_inf)
35
-
36
-
37
- st.metric(label="Prediksinya adalah : ", value = y_pred_inf[0])
38
-
39
- # If your data is a classification, you can follow the example below
40
- # if y_pred_inf[0] == 0:
41
- # st.write('Pasien tidak terkena jantung')
42
- # st.markdown("[Cara Cegah Serangan Jantung](https://www.siloamhospitals.com/informasi-siloam/artikel/cara-cegah-serangan-jantung-di-usia-muda)")
43
-
44
- # else:
45
- # st.write('Pasien kemungkinan terkena jantung')
46
- # st.markdown("[Cara Hidup Sehat Sehabis Terkena Serangan Jantung](https://lifestyle.kompas.com/read/2021/11/09/101744620/7-pola-hidup-sehat-setelah-mengalami-serangan-jantung?page=all)")
 
1
  import streamlit as st
2
  import pandas as pd
3
  import pickle
4
+ import numpy as np
5
 
6
  def run():
7
+ # Load All Files
8
+ with open('best_linear_svm_model.pkl', 'rb') as file:
 
9
  full_process = pickle.load(file)
10
 
11
+ time = np.random.choice(['0.0', '1'], 1000)
12
+ serum_creatinine = np.random.choice(['0.0', '1'], 1000)
13
+ ejection_fraction = np.random.choice(['0.0', '1'], 1000)
14
+
15
+ time_input = st.number_input(label='Silakan Masukan Waktu', min_value=0.1, max_value=0.99)
16
+ serum_creatinine_input = st.number_input(label='Silakan Masukan serum_creatinine here', min_value=0.1, max_value=0.99)
17
+ ejection_fraction_input = st.number_input(label='Silakan Masukan ejection_fraction here', min_value=0.1, max_value=0.99)
18
+
19
+ st.write('Prediksi atas data yang Anda sampaikan adalah: ')
20
+
21
+ data_inf = pd.DataFrame({
22
+ 'time': time_input,
23
+ 'serum_creatinine': serum_creatinine_input,
24
+ 'ejection_fraction': ejection_fraction_input,
25
+ }, index=[0])
26
+
27
+ st.table(data_inf)
28
+
29
+ if st.button(label='predict'):
30
+ # Melakukan prediksi data dummy
31
+ y_pred_inf = full_process.predict(data_inf)
32
+ st.metric(label="Prediksinya adalah:", value=y_pred_inf[0])
33
+
34
+ run() # Call the run function