mv-lab commited on
Commit
6353e5c
ยท
1 Parent(s): 110d9e4

update feb

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. app.py +20 -5
  3. images/a4960.jpg +0 -0
.gitignore CHANGED
@@ -2,3 +2,4 @@ __pycache__/
2
  *.pt
3
  *.gif
4
  *.pth
 
 
2
  *.pt
3
  *.gif
4
  *.pth
5
+ flagged/
app.py CHANGED
@@ -85,16 +85,17 @@ def process_img (image, prompt):
85
 
86
 
87
  title = "InstructIR โœ๏ธ๐Ÿ–ผ๏ธ ๐Ÿค—"
88
- description = ''' ## [High-Quality Image Restoration Following Human Instructions](https://github.com/mv-lab/InstructIR)
 
89
 
90
- [Marcos V. Conde](https://scholar.google.com/citations?user=NtB1kjYAAAAJ&hl=en), [Gregor Geigle](https://scholar.google.com/citations?user=uIlyqRwAAAAJ&hl=en), [Radu Timofte](https://scholar.google.com/citations?user=u3MwH5kAAAAJ&hl=en)
91
 
92
- Computer Vision Lab, University of Wuerzburg | Sony PlayStation, FTG
93
 
94
  ### TL;DR: quickstart
95
  ***InstructIR takes as input an image and a human-written instruction for how to improve that image.***
96
  The (single) neural model performs all-in-one image restoration. InstructIR achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement.
97
- **๐Ÿš€ You can start with the [demo tutorial.](https://github.com/mv-lab/InstructIR/blob/main/demo.ipynb)** Check [our github](https://github.com/mv-lab/InstructIR) for more information
98
 
99
  <details>
100
  <summary> <b> Abstract</b> (click me to read)</summary>
@@ -109,10 +110,24 @@ You can also try general image enhancement prompts (e.g., "retouch this image",
109
 
110
  **Datasets:** We use these datasets BSD100, BSD68, Urban100, WED, Rain100, Aobe MIT5K, LOL, GoPro, SOTS (haze). This demo expects an image with some degradations (blur, noise, rain, low-light, haze).
111
  <br>
 
 
 
 
 
 
 
 
 
 
112
  '''
113
 
114
 
115
- article = "<p style='text-align: center'><a href='https://github.com/mv-lab/InstructIR' target='_blank'>High-Quality Image Restoration Following Human Instructions</a></p>"
 
 
 
 
116
 
117
  #### Image,Prompts examples
118
  examples = [['images/a4960.jpg', "my colors are too off, make it pop so I can use it in instagram"],
 
85
 
86
 
87
  title = "InstructIR โœ๏ธ๐Ÿ–ผ๏ธ ๐Ÿค—"
88
+ description = '''
89
+ ## [High-Quality Image Restoration Following Human Instructions](https://arxiv.org/abs/2401.16468)
90
 
91
+ [Marcos V. Conde](https://mv-lab.github.io/), [Gregor Geigle](https://scholar.google.com/citations?user=uIlyqRwAAAAJ&hl=en), [Radu Timofte](https://scholar.google.com/citations?user=u3MwH5kAAAAJ&hl=en)
92
 
93
+ *Computer Vision Lab, University of Wuerzburg | Sony PlayStation, FTG*
94
 
95
  ### TL;DR: quickstart
96
  ***InstructIR takes as input an image and a human-written instruction for how to improve that image.***
97
  The (single) neural model performs all-in-one image restoration. InstructIR achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement.
98
+ **๐Ÿš€ You can start with the [demo tutorial.](https://github.com/mv-lab/InstructIR/blob/main/demo.ipynb)** Check **[our github](https://github.com/mv-lab/InstructIR)** for more information
99
 
100
  <details>
101
  <summary> <b> Abstract</b> (click me to read)</summary>
 
110
 
111
  **Datasets:** We use these datasets BSD100, BSD68, Urban100, WED, Rain100, Aobe MIT5K, LOL, GoPro, SOTS (haze). This demo expects an image with some degradations (blur, noise, rain, low-light, haze).
112
  <br>
113
+ ```
114
+ @article{conde2024high,
115
+ title={High-Quality Image Restoration Following Human Instructions},
116
+ author={Conde, Marcos V and Geigle, Gregor and Timofte, Radu},
117
+ journal={arXiv preprint arXiv:2401.16468},
118
+ year={2024}
119
+ }
120
+
121
+ ```
122
+ <br>
123
  '''
124
 
125
 
126
+ article = '''
127
+ <p style='text-align: center'> Check our code, models and results at: <a href='https://github.com/mv-lab/InstructIR' target='_blank'>https://github.com/mv-lab/InstructIR</a></p>
128
+ <p style='text-align: center'> Read the full paper at: <a href='https://arxiv.org/abs/2401.16468' target='_blank'>High-Quality Image Restoration Following Human Instructions</a></p>
129
+ <p style='text-align: center'> Consider citing our work if you use it, or you find it insightful </p>
130
+ '''
131
 
132
  #### Image,Prompts examples
133
  examples = [['images/a4960.jpg', "my colors are too off, make it pop so I can use it in instagram"],
images/a4960.jpg CHANGED