File size: 25,555 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim.lr_scheduler import ExponentialLR
from tqdm import tqdm
from pathlib import Path
import shutil
import accelerate
# from models.svc.base import SVCTrainer
from models.svc.base.svc_dataset import SVCOfflineCollator, SVCOfflineDataset
from models.svc.vits.vits import *
from models.svc.base import SVCTrainer
from utils.mel import mel_spectrogram_torch
import json
from models.vocoders.gan.discriminator.mpd import (
MultiPeriodDiscriminator_vits as MultiPeriodDiscriminator,
)
class VitsSVCTrainer(SVCTrainer):
def __init__(self, args, cfg):
self.args = args
self.cfg = cfg
SVCTrainer.__init__(self, args, cfg)
def _accelerator_prepare(self):
(
self.train_dataloader,
self.valid_dataloader,
) = self.accelerator.prepare(
self.train_dataloader,
self.valid_dataloader,
)
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key] = self.accelerator.prepare(self.model[key])
else:
self.model = self.accelerator.prepare(self.model)
if isinstance(self.optimizer, dict):
for key in self.optimizer.keys():
self.optimizer[key] = self.accelerator.prepare(self.optimizer[key])
else:
self.optimizer = self.accelerator.prepare(self.optimizer)
if isinstance(self.scheduler, dict):
for key in self.scheduler.keys():
self.scheduler[key] = self.accelerator.prepare(self.scheduler[key])
else:
self.scheduler = self.accelerator.prepare(self.scheduler)
def _load_model(
self,
checkpoint_dir: str = None,
checkpoint_path: str = None,
resume_type: str = "",
):
r"""Load model from checkpoint. If checkpoint_path is None, it will
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
None, it will load the checkpoint specified by checkpoint_path. **Only use this
method after** ``accelerator.prepare()``.
"""
if checkpoint_path is None:
ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
self.logger.info("Resume from {}...".format(checkpoint_path))
if resume_type in ["resume", ""]:
# Load all the things, including model weights, optimizer, scheduler, and random states.
self.accelerator.load_state(input_dir=checkpoint_path)
# set epoch and step
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
elif resume_type == "finetune":
# Load only the model weights
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.model["generator"]),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.model["discriminator"]),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
self.logger.info("Load model weights for finetune...")
else:
raise ValueError("Resume_type must be `resume` or `finetune`.")
return checkpoint_path
def _build_model(self):
net_g = SynthesizerTrn(
self.cfg.preprocess.n_fft // 2 + 1,
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
# directly use cfg
self.cfg,
)
net_d = MultiPeriodDiscriminator(self.cfg.model.vits.use_spectral_norm)
model = {"generator": net_g, "discriminator": net_d}
return model
def _build_dataset(self):
return SVCOfflineDataset, SVCOfflineCollator
def _build_optimizer(self):
optimizer_g = torch.optim.AdamW(
self.model["generator"].parameters(),
self.cfg.train.learning_rate,
betas=self.cfg.train.AdamW.betas,
eps=self.cfg.train.AdamW.eps,
)
optimizer_d = torch.optim.AdamW(
self.model["discriminator"].parameters(),
self.cfg.train.learning_rate,
betas=self.cfg.train.AdamW.betas,
eps=self.cfg.train.AdamW.eps,
)
optimizer = {"optimizer_g": optimizer_g, "optimizer_d": optimizer_d}
return optimizer
def _build_scheduler(self):
scheduler_g = ExponentialLR(
self.optimizer["optimizer_g"],
gamma=self.cfg.train.lr_decay,
last_epoch=self.epoch - 1,
)
scheduler_d = ExponentialLR(
self.optimizer["optimizer_d"],
gamma=self.cfg.train.lr_decay,
last_epoch=self.epoch - 1,
)
scheduler = {"scheduler_g": scheduler_g, "scheduler_d": scheduler_d}
return scheduler
def _build_criterion(self):
class GeneratorLoss(nn.Module):
def __init__(self, cfg):
super(GeneratorLoss, self).__init__()
self.cfg = cfg
self.l1_loss = nn.L1Loss()
def generator_loss(self, disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
dg = dg.float()
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
def feature_loss(self, fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
rl = rl.float().detach()
gl = gl.float()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def kl_loss(self, z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
def forward(
self,
outputs_g,
outputs_d,
y_mel,
y_hat_mel,
):
loss_g = {}
# mel loss
loss_mel = self.l1_loss(y_mel, y_hat_mel) * self.cfg.train.c_mel
loss_g["loss_mel"] = loss_mel
# kl loss
loss_kl = (
self.kl_loss(
outputs_g["z_p"],
outputs_g["logs_q"],
outputs_g["m_p"],
outputs_g["logs_p"],
outputs_g["z_mask"],
)
* self.cfg.train.c_kl
)
loss_g["loss_kl"] = loss_kl
# feature loss
loss_fm = self.feature_loss(outputs_d["fmap_rs"], outputs_d["fmap_gs"])
loss_g["loss_fm"] = loss_fm
# gan loss
loss_gen, losses_gen = self.generator_loss(outputs_d["y_d_hat_g"])
loss_g["loss_gen"] = loss_gen
loss_g["loss_gen_all"] = loss_mel + loss_kl + loss_fm + loss_gen
return loss_g
class DiscriminatorLoss(nn.Module):
def __init__(self, cfg):
super(DiscriminatorLoss, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
def __call__(self, disc_real_outputs, disc_generated_outputs):
loss_d = {}
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
dr = dr.float()
dg = dg.float()
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
loss_d["loss_disc_all"] = loss
return loss_d
criterion = {
"generator": GeneratorLoss(self.cfg),
"discriminator": DiscriminatorLoss(self.cfg),
}
return criterion
# Keep legacy unchanged
def write_summary(
self,
losses,
stats,
images={},
audios={},
audio_sampling_rate=24000,
tag="train",
):
for key, value in losses.items():
self.sw.add_scalar(tag + "/" + key, value, self.step)
self.sw.add_scalar(
"learning_rate",
self.optimizer["optimizer_g"].param_groups[0]["lr"],
self.step,
)
if len(images) != 0:
for key, value in images.items():
self.sw.add_image(key, value, self.global_step, batchformats="HWC")
if len(audios) != 0:
for key, value in audios.items():
self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)
def write_valid_summary(
self, losses, stats, images={}, audios={}, audio_sampling_rate=24000, tag="val"
):
for key, value in losses.items():
self.sw.add_scalar(tag + "/" + key, value, self.step)
if len(images) != 0:
for key, value in images.items():
self.sw.add_image(key, value, self.global_step, batchformats="HWC")
if len(audios) != 0:
for key, value in audios.items():
self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)
def _get_state_dict(self):
state_dict = {
"generator": self.model["generator"].state_dict(),
"discriminator": self.model["discriminator"].state_dict(),
"optimizer_g": self.optimizer["optimizer_g"].state_dict(),
"optimizer_d": self.optimizer["optimizer_d"].state_dict(),
"scheduler_g": self.scheduler["scheduler_g"].state_dict(),
"scheduler_d": self.scheduler["scheduler_d"].state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def get_state_dict(self):
state_dict = {
"generator": self.model["generator"].state_dict(),
"discriminator": self.model["discriminator"].state_dict(),
"optimizer_g": self.optimizer["optimizer_g"].state_dict(),
"optimizer_d": self.optimizer["optimizer_d"].state_dict(),
"scheduler_g": self.scheduler["scheduler_g"].state_dict(),
"scheduler_d": self.scheduler["scheduler_d"].state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def load_model(self, checkpoint):
self.step = checkpoint["step"]
self.epoch = checkpoint["epoch"]
self.model["generator"].load_state_dict(checkpoint["generator"])
self.model["discriminator"].load_state_dict(checkpoint["discriminator"])
self.optimizer["optimizer_g"].load_state_dict(checkpoint["optimizer_g"])
self.optimizer["optimizer_d"].load_state_dict(checkpoint["optimizer_d"])
self.scheduler["scheduler_g"].load_state_dict(checkpoint["scheduler_g"])
self.scheduler["scheduler_d"].load_state_dict(checkpoint["scheduler_d"])
@torch.inference_mode()
def _valid_step(self, batch):
r"""Testing forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_test_epoch`` for usage.
"""
valid_losses = {}
total_loss = 0
valid_stats = {}
# Discriminator
# Generator output
outputs_g = self.model["generator"](batch)
y_mel = slice_segments(
batch["mel"].transpose(1, 2),
outputs_g["ids_slice"],
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
)
y_hat_mel = mel_spectrogram_torch(
outputs_g["y_hat"].squeeze(1), self.cfg.preprocess
)
y = slice_segments(
batch["audio"].unsqueeze(1),
outputs_g["ids_slice"] * self.cfg.preprocess.hop_size,
self.cfg.preprocess.segment_size,
)
# Discriminator output
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"].detach())
## Discriminator loss
loss_d = self.criterion["discriminator"](
outputs_d["y_d_hat_r"], outputs_d["y_d_hat_g"]
)
valid_losses.update(loss_d)
## Generator
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"])
loss_g = self.criterion["generator"](outputs_g, outputs_d, y_mel, y_hat_mel)
valid_losses.update(loss_g)
for item in valid_losses:
valid_losses[item] = valid_losses[item].item()
total_loss = loss_g["loss_gen_all"] + loss_d["loss_disc_all"]
return (
total_loss.item(),
valid_losses,
valid_stats,
)
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].eval()
else:
self.model.eval()
epoch_sum_loss = 0.0
epoch_losses = dict()
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
total_loss, valid_losses, valid_stats = self._valid_step(batch)
epoch_sum_loss += total_loss
if isinstance(valid_losses, dict):
for key, value in valid_losses.items():
if key not in epoch_losses.keys():
epoch_losses[key] = value
else:
epoch_losses[key] += value
epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader)
for key in epoch_losses.keys():
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)
self.accelerator.wait_for_everyone()
return epoch_sum_loss, epoch_losses
### THIS IS MAIN ENTRY ###
def train_loop(self):
r"""Training loop. The public entry of training process."""
# Wait everyone to prepare before we move on
self.accelerator.wait_for_everyone()
# dump config file
if self.accelerator.is_main_process:
self.__dump_cfg(self.config_save_path)
# self.optimizer.zero_grad()
# Wait to ensure good to go
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
# Do training & validating epoch
train_total_loss, train_losses = self._train_epoch()
if isinstance(train_losses, dict):
for key, loss in train_losses.items():
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
valid_total_loss, valid_losses = self._valid_epoch()
if isinstance(valid_losses, dict):
for key, loss in valid_losses.items():
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
self.logger.info(" |- Train/Loss: {:.6f}".format(train_total_loss))
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_total_loss))
self.accelerator.log(
{
"Epoch/Train Loss": train_total_loss,
"Epoch/Valid Loss": valid_total_loss,
},
step=self.epoch,
)
self.accelerator.wait_for_everyone()
# Check if hit save_checkpoint_stride and run_eval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
hit_dix = []
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
hit_dix.append(i)
run_eval |= self.run_eval[i]
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and save_checkpoint:
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, train_total_loss
),
)
self.tmp_checkpoint_save_path = path
self.accelerator.save_state(path)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
self._save_auxiliary_states()
# Remove old checkpoints
to_remove = []
for idx in hit_dix:
self.checkpoints_path[idx].append(path)
while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
to_remove.append((idx, self.checkpoints_path[idx].pop(0)))
# Search conflicts
total = set()
for i in self.checkpoints_path:
total |= set(i)
do_remove = set()
for idx, path in to_remove[::-1]:
if path in total:
self.checkpoints_path[idx].insert(0, path)
else:
do_remove.add(path)
# Remove old checkpoints
for path in do_remove:
shutil.rmtree(path, ignore_errors=True)
self.logger.debug(f"Remove old checkpoint: {path}")
self.accelerator.wait_for_everyone()
if run_eval:
# TODO: run evaluation
pass
# Update info for each epoch
self.epoch += 1
# Finish training and save final checkpoint
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
path = os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
self.tmp_checkpoint_save_path = path
self.accelerator.save_state(
os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
self._save_auxiliary_states()
self.accelerator.end_training()
def _train_step(self, batch):
r"""Forward step for training and inference. This function is called
in ``_train_step`` & ``_test_step`` function.
"""
train_losses = {}
total_loss = 0
training_stats = {}
## Train Discriminator
# Generator output
outputs_g = self.model["generator"](batch)
y_mel = slice_segments(
batch["mel"].transpose(1, 2),
outputs_g["ids_slice"],
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
)
y_hat_mel = mel_spectrogram_torch(
outputs_g["y_hat"].squeeze(1), self.cfg.preprocess
)
y = slice_segments(
# [1, 168418] -> [1, 1, 168418]
batch["audio"].unsqueeze(1),
outputs_g["ids_slice"] * self.cfg.preprocess.hop_size,
self.cfg.preprocess.segment_size,
)
# Discriminator output
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"].detach())
# Discriminator loss
loss_d = self.criterion["discriminator"](
outputs_d["y_d_hat_r"], outputs_d["y_d_hat_g"]
)
train_losses.update(loss_d)
# BP and Grad Updated
self.optimizer["optimizer_d"].zero_grad()
self.accelerator.backward(loss_d["loss_disc_all"])
self.optimizer["optimizer_d"].step()
## Train Generator
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"])
loss_g = self.criterion["generator"](outputs_g, outputs_d, y_mel, y_hat_mel)
train_losses.update(loss_g)
# BP and Grad Updated
self.optimizer["optimizer_g"].zero_grad()
self.accelerator.backward(loss_g["loss_gen_all"])
self.optimizer["optimizer_g"].step()
for item in train_losses:
train_losses[item] = train_losses[item].item()
total_loss = loss_g["loss_gen_all"] + loss_d["loss_disc_all"]
return (
total_loss.item(),
train_losses,
training_stats,
)
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
epoch_sum_loss: float = 0.0
epoch_losses: dict = {}
epoch_step: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Do training step and BP
with self.accelerator.accumulate(self.model):
total_loss, train_losses, training_stats = self._train_step(batch)
self.batch_count += 1
# Update info for each step
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
epoch_sum_loss += total_loss
for key, value in train_losses.items():
if key not in epoch_losses.keys():
epoch_losses[key] = value
else:
epoch_losses[key] += value
self.accelerator.log(
{
"Step/Generator Loss": train_losses["loss_gen_all"],
"Step/Discriminator Loss": train_losses["loss_disc_all"],
"Step/Generator Learning Rate": self.optimizer[
"optimizer_d"
].param_groups[0]["lr"],
"Step/Discriminator Learning Rate": self.optimizer[
"optimizer_g"
].param_groups[0]["lr"],
},
step=self.step,
)
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
epoch_sum_loss = (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_sum_loss, epoch_losses
def __dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
|