File size: 33,021 Bytes
0a8b4a2 ce40b40 0a8b4a2 ce40b40 0a8b4a2 ce40b40 0a8b4a2 ce40b40 0a8b4a2 ce40b40 0e222e0 ce40b40 0a8b4a2 ce40b40 0a8b4a2 85f82d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
# Testing one file gradio app for zero gpu spaces not working as expected.
# Check here for the issue:
import gc
import json
import random
from typing import List, Optional
import spaces
import gradio as gr
from huggingface_hub import ModelCard
import torch
import numpy as np
from pydantic import BaseModel
from PIL import Image
from diffusers import (
FluxPipeline,
FluxImg2ImgPipeline,
FluxInpaintPipeline,
FluxControlNetPipeline,
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
AutoPipelineForText2Image,
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
DiffusionPipeline,
AutoencoderKL,
FluxControlNetModel,
FluxMultiControlNetModel,
ControlNetModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from huggingface_hub import hf_hub_download
from transformers import CLIPFeatureExtractor
from photomaker import FaceAnalysis2
from diffusers.schedulers import *
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from controlnet_aux.processor import Processor
from photomaker import (
PhotoMakerStableDiffusionXLPipeline,
PhotoMakerStableDiffusionXLControlNetPipeline,
analyze_faces
)
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1
# Initialize System
def load_sd():
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Models
models = [
{
"repo_id": "black-forest-labs/FLUX.1-dev",
"loader": "flux",
"compute_type": torch.bfloat16,
},
{
"repo_id": "SG161222/RealVisXL_V4.0",
"loader": "xl",
"compute_type": torch.float16,
}
]
for model in models:
try:
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
model['repo_id'],
torch_dtype = model['compute_type'],
safety_checker = None,
variant = "fp16"
).to(device)
model["pipeline"].enable_model_cpu_offload()
except:
model["pipeline"] = AutoPipelineForText2Image.from_pretrained(
model['repo_id'],
torch_dtype = model['compute_type'],
safety_checker = None
).to(device)
model["pipeline"].enable_model_cpu_offload()
# VAE n Refiner
sdxl_vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=sdxl_vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
refiner.enable_model_cpu_offload()
# Safety Checker
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device)
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32", from_pt=True)
# Controlnets
controlnet_models = [
{
"repo_id": "xinsir/controlnet-depth-sdxl-1.0",
"name": "depth_xl",
"layers": ["depth"],
"loader": "xl",
"compute_type": torch.float16,
},
{
"repo_id": "xinsir/controlnet-canny-sdxl-1.0",
"name": "canny_xl",
"layers": ["canny"],
"loader": "xl",
"compute_type": torch.float16,
},
{
"repo_id": "xinsir/controlnet-openpose-sdxl-1.0",
"name": "openpose_xl",
"layers": ["pose"],
"loader": "xl",
"compute_type": torch.float16,
},
{
"repo_id": "xinsir/controlnet-scribble-sdxl-1.0",
"name": "scribble_xl",
"layers": ["scribble"],
"loader": "xl",
"compute_type": torch.float16,
},
{
"repo_id": "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
"name": "flux1_union_pro",
"layers": ["canny_fl", "tile_fl", "depth_fl", "blur_fl", "pose_fl", "gray_fl", "low_quality_fl"],
"loader": "flux-multi",
"compute_type": torch.bfloat16,
}
]
for controlnet in controlnet_models:
if controlnet["loader"] == "xl":
controlnet["controlnet"] = ControlNetModel.from_pretrained(
controlnet["repo_id"],
torch_dtype = controlnet['compute_type']
).to(device)
elif controlnet["loader"] == "flux-multi":
controlnet["controlnet"] = FluxMultiControlNetModel([FluxControlNetModel.from_pretrained(
controlnet["repo_id"],
torch_dtype = controlnet['compute_type']
).to(device)])
#TODO: Add support for flux only controlnet
# Face Detection (for PhotoMaker)
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
# PhotoMaker V2 (for SDXL only)
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
return device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt
device, models, sdxl_vae, refiner, safety_checker, feature_extractor, controlnet_models, face_detector, photomaker_ckpt = load_sd()
# Models
class ControlNetReq(BaseModel):
controlnets: List[str] # ["canny", "tile", "depth"]
control_images: List[Image.Image]
controlnet_conditioning_scale: List[float]
class Config:
arbitrary_types_allowed=True
class SDReq(BaseModel):
model: str = ""
prompt: str = ""
negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev"
fast_generation: Optional[bool] = True
loras: Optional[list] = []
embeddings: Optional[list] = []
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
scheduler: Optional[str] = "euler_fl"
height: int = 1024
width: int = 1024
num_images_per_prompt: int = 1
num_inference_steps: int = 8
guidance_scale: float = 3.5
seed: Optional[int] = 0
refiner: bool = False
vae: bool = True
controlnet_config: Optional[ControlNetReq] = None
photomaker_images: Optional[List[Image.Image]] = None
class Config:
arbitrary_types_allowed=True
class SDImg2ImgReq(SDReq):
image: Image.Image
strength: float = 1.0
class Config:
arbitrary_types_allowed=True
class SDInpaintReq(SDImg2ImgReq):
mask_image: Image.Image
class Config:
arbitrary_types_allowed=True
# Helper functions
def get_controlnet(controlnet_config: ControlNetReq):
control_mode = []
controlnet = []
for m in controlnet_models:
for c in controlnet_config.controlnets:
if c in m["layers"]:
control_mode.append(m["layers"].index(c))
controlnet.append(m["controlnet"])
return controlnet, control_mode
def get_pipe(request: SDReq | SDImg2ImgReq | SDInpaintReq):
for m in models:
if m["repo_id"] == request.model:
pipeline = m['pipeline']
controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None)
pipe_args = {
"pipeline": pipeline,
"control_mode": control_mode,
}
if request.controlnet_config:
pipe_args["controlnet"] = controlnet
if not request.photomaker_images:
if isinstance(request, SDReq):
pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
elif isinstance(request, SDImg2ImgReq):
pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
elif isinstance(request, SDInpaintReq):
pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
else:
raise ValueError(f"Unknown request type: {type(request)}")
elif isinstance(request, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
if request.controlnet_config:
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLControlNetPipeline.from_pipe(**pipe_args)
else:
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLPipeline.from_pipe(**pipe_args)
else:
raise ValueError(f"Invalid request type: {type(request)}")
return pipe_args
def load_scheduler(pipeline, scheduler):
schedulers = {
"dpmpp_2m": (DPMSolverMultistepScheduler, {}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}),
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}),
"dpmpp_sde": (DPMSolverSinglestepScheduler, {}),
"dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"dpm2": (KDPM2DiscreteScheduler, {}),
"dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"dpm2_a": (KDPM2AncestralDiscreteScheduler, {}),
"dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"euler": (EulerDiscreteScheduler, {}),
"euler_a": (EulerAncestralDiscreteScheduler, {}),
"heun": (HeunDiscreteScheduler, {}),
"lms": (LMSDiscreteScheduler, {}),
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"deis": (DEISMultistepScheduler, {}),
"unipc": (UniPCMultistepScheduler, {}),
"fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
}
scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
if scheduler_class is not None:
scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
else:
raise ValueError(f"Unknown scheduler: {scheduler}")
return scheduler
def load_loras(pipeline, loras, fast_generation):
for i, lora in enumerate(loras):
pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
adapter_names = [f"lora_{i}" for i in range(len(loras))]
adapter_weights = [lora['weight'] for lora in loras]
if fast_generation:
hyper_lora = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors"
)
hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0
pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora")
adapter_names.append("hyper_lora")
adapter_weights.append(hyper_weight)
pipeline.set_adapters(adapter_names, adapter_weights)
def load_xl_embeddings(pipeline, embeddings):
for embedding in embeddings:
state_dict = load_file(hf_hub_download(embedding['repo_id']))
pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
for image in images:
if resize_mode == "resize_only":
image = image.resize((width, height))
elif resize_mode == "crop_and_resize":
image = image.crop((0, 0, width, height))
elif resize_mode == "resize_and_fill":
image = image.resize((width, height), Image.Resampling.LANCZOS)
return images
def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str):
response_images = []
control_images = resize_images(control_images, height, width, resize_mode)
for controlnet, image in zip(controlnets, control_images):
if controlnet == "canny" or controlnet == "canny_xs" or controlnet == "canny_fl":
processor = Processor('canny')
elif controlnet == "depth" or controlnet == "depth_xs" or controlnet == "depth_fl":
processor = Processor('depth_midas')
elif controlnet == "pose" or controlnet == "pose_fl":
processor = Processor('openpose_full')
elif controlnet == "scribble":
processor = Processor('scribble')
else:
raise ValueError(f"Invalid Controlnet: {controlnet}")
response_images.append(processor(image, to_pil=True))
return response_images
def check_image_safety(images: List[Image.Image]):
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
has_nsfw_concepts = safety_checker(
images=[images],
clip_input=safety_checker_input.pixel_values.to("cuda"),
)
return has_nsfw_concepts[1]
def get_prompt_attention(pipeline, prompt, negative_prompt):
if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)):
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt)
return prompt_embeds, None, pooled_prompt_embeds, None
elif isinstance(pipeline, StableDiffusionXLPipeline):
prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt)
return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
else:
raise ValueError(f"Invalid pipeline type: {type(pipeline)}")
def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str):
image_input_ids = []
image_id_embeds = []
photomaker_images = resize_images(photomaker_images, height, width, resize_mode)
for image in photomaker_images:
image_input_ids.append(img)
img = np.array(image)[:, :, ::-1]
faces = analyze_faces(face_detector, image)
if len(faces) > 0:
image_id_embeds.append(torch.from_numpy(faces[0]['embeddings']))
else:
raise ValueError("No face detected in the image")
return image_input_ids, image_id_embeds
def cleanup(pipeline, loras = None, embeddings = None):
if loras:
pipeline.disable_lora()
pipeline.unload_lora_weights()
if embeddings:
pipeline.unload_textual_inversion()
gc.collect()
torch.cuda.empty_cache()
# Gen function
@spaces.GPU
def gen_img(
request: SDReq | SDImg2ImgReq | SDInpaintReq
):
pipeline_args = get_pipe(request)
pipeline = pipeline_args['pipeline']
try:
pipeline.scheduler = load_scheduler(pipeline, request.scheduler)
load_loras(pipeline, request.loras, request.fast_generation)
load_xl_embeddings(pipeline, request.embeddings)
control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None
photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None)
positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt)
# Common args
args = {
'prompt_embeds': positive_prompt_embeds,
'pooled_prompt_embeds': positive_prompt_pooled,
'height': request.height,
'width': request.width,
'num_images_per_prompt': request.num_images_per_prompt,
'num_inference_steps': request.num_inference_steps,
'guidance_scale': request.guidance_scale,
'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
}
if isinstance(pipeline, any([StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline])):
args['clip_skip'] = request.clip_skip
args['negative_prompt_embeds'] = negative_prompt_embeds
args['negative_pooled_prompt_embeds'] = negative_prompt_pooled
if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
args['control_mode'] = pipeline_args['control_mode']
args['control_image'] = control_images
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
if isinstance(request, SDReq):
args['image'] = control_images
elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)):
args['control_image'] = control_images
if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
args['input_id_images'] = photomaker_images
args['input_id_embeds'] = photomaker_id_embeds
args['start_merge_step'] = 10
if isinstance(request, SDImg2ImgReq):
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
args['strength'] = request.strength
elif isinstance(request, SDInpaintReq):
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)
args['strength'] = request.strength
images = pipeline(**args).images
if request.refiner:
images = refiner(
prompt=request.prompt,
num_inference_steps=40,
denoising_start=0.7,
image=images.images
).images
cleanup(pipeline, request.loras, request.embeddings)
return images
except Exception as e:
cleanup(pipeline, request.loras, request.embeddings)
raise ValueError(f"Error generating image: {e}") from e
# CSS
css = """
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600&display=swap');
body {
font-family: 'Poppins', sans-serif !important;
}
.center-content {
text-align: center;
max-width: 600px;
margin: 0 auto;
padding: 20px;
}
.center-content h1 {
font-weight: 600;
margin-bottom: 1rem;
}
.center-content p {
margin-bottom: 1.5rem;
}
"""
flux_models = ["black-forest-labs/FLUX.1-dev"]
with open("data/images/loras/flux.json", "r") as f:
loras = json.load(f)
# Main Gradio app
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
# Header
with gr.Column(elem_classes="center-content"):
gr.Markdown("""
# π AAI: All AI
Unleash your creativity with our multi-modal AI platform.
[![Sync code to HF Space](https://github.com/mantrakp04/aai/actions/workflows/hf-space.yml/badge.svg)](https://github.com/mantrakp04/aai/actions/workflows/hf-space.yml)
""")
# Tabs
with gr.Tabs():
with gr.Tab(label="πΌοΈ Image"):
with gr.Tabs():
with gr.Tab("Flux"):
"""
Create the image tab for Generative Image Generation Models
Args:
models: list
A list containing the models repository paths
gap_iol, gap_la, gap_le, gap_eio, gap_io: Optional[List[dict]]
A list of dictionaries containing the title and component for the custom gradio component
Example:
def gr_comp():
gr.Label("Hello World")
[
{
'title': "Title",
'component': gr_comp()
}
]
loras: list
A list of dictionaries containing the image and title for the Loras Gallery
Generally a loaded json file from the data folder
"""
def process_gaps(gaps: List[dict]):
for gap in gaps:
with gr.Accordion(gap['title']):
gap['component']
with gr.Row():
with gr.Column():
with gr.Group() as image_options:
model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True)
prompt = gr.Textbox(lines=5, label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) π§ͺ")
with gr.Accordion("Loras", open=True): # Lora Gallery
lora_gallery = gr.Gallery(
label="Gallery",
value=[(lora['image'], lora['title']) for lora in loras],
allow_preview=False,
columns=[3],
type="pil"
)
with gr.Group():
with gr.Column():
with gr.Row():
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path")
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA")
custom_lora_info = gr.HTML(visible=False)
add_lora = gr.Button(value="Add LoRA")
enabled_loras = gr.State(value=[])
with gr.Group():
with gr.Row():
for i in range(6): # only support max 6 loras due to inference time
with gr.Column():
with gr.Column(scale=2):
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True)
with gr.Column():
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False)
with gr.Accordion("Embeddings", open=False): # Embeddings
gr.Label("To be implemented")
with gr.Accordion("Image Options"): # Image Options
with gr.Tabs():
image_options = {
"img2img": "Upload Image",
"inpaint": "Upload Image",
"canny": "Upload Image",
"pose": "Upload Image",
"depth": "Upload Image",
}
for image_option, label in image_options.items():
with gr.Tab(image_option):
if not image_option in ['inpaint', 'scribble']:
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil")
elif image_option in ['inpaint', 'scribble']:
globals()[f"{image_option}_image"] = gr.ImageEditor(
label=label,
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(),
interactive=True,
type="pil",
)
# Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint)
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True)
resize_mode = gr.Radio(
label="Resize Mode",
choices=["crop and resize", "resize only", "resize and fill"],
value="resize and fill",
interactive=True
)
with gr.Column():
with gr.Group():
output_images = gr.Gallery(
label="Output Images",
value=[],
allow_preview=True,
type="pil",
interactive=False,
)
generate_images = gr.Button(value="Generate Images", variant="primary")
with gr.Accordion("Advance Settings", open=True):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
choices = [
"fm_euler"
],
value="fm_euler",
interactive=True
)
with gr.Row():
for column in range(2):
with gr.Column():
options = [
("Height", "image_height", 64, 1024, 64, 1024, True),
("Width", "image_width", 64, 1024, 64, 1024, True),
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True),
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True),
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False),
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True),
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True),
]
for label, var_name, min_val, max_val, step, value, visible in options[column::2]:
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True)
with gr.Row():
refiner = gr.Checkbox(
label="Refiner π§ͺ",
value=False,
)
vae = gr.Checkbox(
label="VAE",
value=True,
)
# Events
# Base Options
fast_generation.change(update_fast_generation, [model, fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore
# Lora Gallery
lora_gallery.select(selected_lora_from_gallery, None, selected_lora)
custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora])
add_lora.click(add_to_enabled_loras, [model, selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras])
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore
for i in range(6):
globals()[f"lora_remove_{i}"].click(
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index),
[enabled_loras],
[enabled_loras]
)
# Generate Image
generate_images.click(
generate_image, # type: ignore
[
model, prompt, negative_prompt, fast_generation, enabled_loras,
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore
resize_mode,
scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore
refiner, vae
],
[output_images]
)
with gr.Tab("SDXL"):
gr.Label("To be implemented")
with gr.Tab(label="π΅ Audio"):
gr.Label("Coming soon!")
with gr.Tab(label="π¬ Video"):
gr.Label("Coming soon!")
with gr.Tab(label="π Text"):
gr.Label("Coming soon!")
demo.launch(
share=False,
debug=True,
)
|