content_rewrite / app.py
mano96's picture
Update app.py
e1c584b
from newspaper import Article
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
def my_paraphrase(sentence):
sentence = "paraphrase: " + sentence + " </s>"
encoding = tokenizer.encode_plus(sentence,padding=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
do_sample=True,
top_k=120,
top_p=0.95,
early_stopping=True,
num_return_sequences=1)
output = tokenizer.decode(outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
return(output)
def text(input_text):
output = " ".join([my_paraphrase(sent) for sent in sent_tokenize(input_text)])
return output
import gradio as gr
def summarize(Input_Text):
outputtext = text(Input_Text)
return outputtext
gr.Interface(fn=summarize, inputs=gr.inputs.Textbox(lines=7, placeholder="Enter text here"), css="""span.svelte-1l2rj76{color: #591fc9;font-size: 18px;
font-weight: 600;}.secondary.svelte-1ma3u5b{background: #591fc9; color: #fff;}.secondary.svelte-1ma3u5b:hover{background:#8a59e8;color:#000;}
.svelte-2xzfnp textarea {border: 1px solid #591fc9}.primary.svelte-1ma3u5b{background: #f8d605;color: #000;}.primary.svelte-1ma3u5b:hover{background: #ffe751;color: #591fc9;}.svelte-2xzfnp{height: 168px !important;}.svelte-1iguv9h {max-width: none !important; margin: 0px !important; padding: 0px !important;} label.svelte-2xzfnp{display: contents !important;} """, outputs=[gr.outputs.Textbox(label="Paraphrased Text")],examples=[["developed by python team"
]]).launch(inline=False)