Spaces:
Runtime error
Runtime error
Mandar Patil
commited on
Commit
•
f23693d
1
Parent(s):
df03e84
intial commit
Browse files- app.py +96 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[ ]:
|
5 |
+
|
6 |
+
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
import torch
|
9 |
+
import gradio as gr
|
10 |
+
import re
|
11 |
+
|
12 |
+
def cleaning_history_tuple(history):
|
13 |
+
s=sum(history,())
|
14 |
+
s=list(s)
|
15 |
+
s2=""
|
16 |
+
for i in s:
|
17 |
+
i=re.sub("\n", '', i)
|
18 |
+
i=re.sub("<p>", '', i)
|
19 |
+
i=re.sub("</p>", '', i)
|
20 |
+
s2=s2+i+'\n'
|
21 |
+
return s2
|
22 |
+
|
23 |
+
def ai_output(string1,string2):
|
24 |
+
a1=len(string1)
|
25 |
+
a2=len(string2)
|
26 |
+
string3=string2[a1:]
|
27 |
+
sub1="A:"
|
28 |
+
sub2="User"
|
29 |
+
#sub3="\n"
|
30 |
+
try:
|
31 |
+
try:
|
32 |
+
idx1=string3.index(sub1)
|
33 |
+
response=string3[:idx1]
|
34 |
+
return response
|
35 |
+
|
36 |
+
except:
|
37 |
+
idx1=string3.index(sub2)
|
38 |
+
response=string3[:idx1]
|
39 |
+
return response
|
40 |
+
except:
|
41 |
+
return string3
|
42 |
+
|
43 |
+
model4 = AutoModelForCausalLM.from_pretrained("bigscience/bloom-3b")
|
44 |
+
tokenizer4 = AutoTokenizer.from_pretrained("bigscience/bloom-3b")
|
45 |
+
|
46 |
+
def predict(input,initial_prompt, temperature=0.7,top_p=1,top_k=5,max_tokens=64,no_repeat_ngram_size=1,num_beams=6,do_sample=True, history=[]):
|
47 |
+
|
48 |
+
s = cleaning_history_tuple(history)
|
49 |
+
|
50 |
+
s = s+ "\n"+ "User: "+ input + "\n" + "Assistant: "
|
51 |
+
s2=initial_prompt+" " + s
|
52 |
+
|
53 |
+
input_ids = tokenizer4.encode(str(s2), return_tensors="pt")
|
54 |
+
response = model4.generate(input_ids, min_length = 10,
|
55 |
+
max_new_tokens=int(max_tokens),
|
56 |
+
top_k=int(top_k),
|
57 |
+
top_p=float(top_p),
|
58 |
+
temperature=float(temperature),
|
59 |
+
no_repeat_ngram_size=int(no_repeat_ngram_size),
|
60 |
+
num_beams = int(num_beams),
|
61 |
+
do_sample = bool(do_sample),
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
response2 = tokenizer4.decode(response[0])
|
66 |
+
print("Response after decoding tokenizer: ",response2)
|
67 |
+
print("\n\n")
|
68 |
+
response3=ai_output(s2,response2)
|
69 |
+
|
70 |
+
input="User: "+input
|
71 |
+
response3="Assistant: "+ response3
|
72 |
+
history.append((input, response3))
|
73 |
+
|
74 |
+
return history, history
|
75 |
+
|
76 |
+
#gr.Interface(fn=predict,title="BLOOM-3b",
|
77 |
+
# inputs=["text","text","text","text","text","text","text","text","text",'state'],
|
78 |
+
#
|
79 |
+
# outputs=["chatbot",'state']).launch()
|
80 |
+
|
81 |
+
|
82 |
+
gr.Interface(inputs=[gr.Textbox(label="input", lines=1, value=""),
|
83 |
+
gr.Textbox(label="initial_prompt", lines=1, value=prompt),
|
84 |
+
gr.Textbox(label="temperature", lines=1, value=0.7),
|
85 |
+
gr.Textbox(label="top_p", lines=1, value=1),
|
86 |
+
gr.Textbox(label="top_k", lines=1, value=5),
|
87 |
+
gr.Textbox(label="max_tokens", lines=1, value=64),
|
88 |
+
gr.Textbox(label="no_repeat_ngram_size", lines=1, value=1),
|
89 |
+
gr.Textbox(label="num_beams", lines=1, value=6),
|
90 |
+
gr.Textbox(label="do_sample", lines=1, value="True"), 'state'],
|
91 |
+
fn=predict, title="OPT-6.7B", outputs=["chatbot",'state']
|
92 |
+
|
93 |
+
#inputs=["text","text","text","text","text","text","text","text","text",'state'],
|
94 |
+
|
95 |
+
).launch()
|
96 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
transformers
|