Spaces:
Runtime error
Runtime error
import os | |
from transformers import AutoTokenizer, AutoConfig | |
from optimum.intel.openvino import OVModelForCausalLM | |
from generation_utils import run_generation, estimate_latency, reset_textbox,get_special_token_id | |
from config import SUPPORTED_LLM_MODELS | |
import gradio as gr | |
from threading import Thread | |
from time import perf_counter | |
from typing import List | |
from transformers import AutoTokenizer, TextIteratorStreamer | |
import numpy as np | |
import os | |
from flask import Flask, render_template, redirect, url_for, request, flash | |
from flask_sqlalchemy import SQLAlchemy | |
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user | |
from werkzeug.security import generate_password_hash, check_password_hash | |
app = Flask(__name__) | |
app.config['SECRET_KEY'] = 'your_secret_key' | |
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db' | |
db = SQLAlchemy(app) | |
login_manager = LoginManager() | |
login_manager.init_app(app) | |
login_manager.login_view = 'login' | |
class User(db.Model): | |
id = db.Column(db.Integer, primary_key=True) | |
username = db.Column(db.String(80), unique=True, nullable=False) | |
email = db.Column(db.String(120), unique=True, nullable=False) | |
def __repr__(self): | |
return '<User %r>' % self.username | |
# Create the database tables | |
with app.app_context(): | |
db.create_all() | |
def load_user(user_id): | |
return User.query.get(int(user_id)) | |
def signup(): | |
if request.method == 'POST': | |
username = request.form['username'] | |
password = request.form['password'] | |
hashed_password = generate_password_hash(password, method='sha256') | |
new_user = User(username=username, password=hashed_password) | |
db.session.add(new_user) | |
db.session.commit() | |
flash('Signup successful!', 'success') | |
return redirect(url_for('login')) | |
return render_template('signup.html') | |
def login(): | |
if request.method == 'POST': | |
username = request.form['username'] | |
password = request.form['password'] | |
user = User.query.filter_by(username=username).first() | |
if user and check_password_hash(user.password, password): | |
login_user(user) | |
return redirect(url_for('dashboard')) | |
flash('Invalid username or password', 'danger') | |
return render_template('login.html') | |
def dashboard(): | |
return render_template('dashboard.html', name=current_user.username) | |
def logout(): | |
logout_user() | |
return redirect(url_for('login')) | |
if __name__ == '__main__': | |
app.run(debug=True) | |
model_dir = "C:/Users/KIIT/OneDrive/Desktop/INTEL/phi-2/INT8_compressed_weights" | |
print(f"Checking model directory: {model_dir}") | |
print(f"Contents: {os.listdir(model_dir)}") # Check contents of the directory | |
print(f"Loading model from {model_dir}") | |
model_name = "susnato/phi-2" | |
model_configuration = SUPPORTED_LLM_MODELS["phi-2"] | |
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""} | |
tok = AutoTokenizer.from_pretrained(model_name) | |
ov_model = OVModelForCausalLM.from_pretrained( | |
model_dir, | |
device="CPU", | |
ov_config=ov_config, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer_kwargs = model_configuration.get("toeknizer_kwargs", {}) | |
# Continue with your tokenizer usage | |
response_key = model_configuration.get("response_key") | |
tokenizer_response_key = None | |
def get_special_token_id(tokenizer: AutoTokenizer, key: str) -> int: | |
""" | |
Gets the token ID for a given string that has been added to the tokenizer as a special token. | |
Args: | |
tokenizer (PreTrainedTokenizer): the tokenizer | |
key (str): the key to convert to a single token | |
Raises: | |
ValueError: if more than one ID was generated | |
Returns: | |
int: the token ID for the given key | |
""" | |
token_ids = tokenizer.encode(key) | |
if len(token_ids) > 1: | |
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}") | |
return token_ids[0] | |
if response_key is not None: | |
tokenizer_response_key = next( | |
(token for token in tokenizer.additional_special_tokens if token.startswith(response_key)), | |
None, | |
) | |
end_key_token_id = None | |
if tokenizer_response_key: | |
try: | |
end_key = model_configuration.get("end_key") | |
if end_key: | |
end_key_token_id =get_special_token_id(tokenizer, end_key) | |
# Ensure generation stops once it generates "### End" | |
except ValueError: | |
pass | |
prompt_template = model_configuration.get("prompt_template", "{instruction}") | |
end_key_token_id = end_key_token_id or tokenizer.eos_token_id | |
pad_token_id = end_key_token_id or tokenizer.pad_token_id | |
def estimate_latency( | |
current_time: float, | |
current_perf_text: str, | |
new_gen_text: str, | |
per_token_time: List[float], | |
num_tokens: int, | |
): | |
""" | |
Helper function for performance estimation | |
Parameters: | |
current_time (float): This step time in seconds. | |
current_perf_text (str): Current content of performance UI field. | |
new_gen_text (str): New generated text. | |
per_token_time (List[float]): history of performance from previous steps. | |
num_tokens (int): Total number of generated tokens. | |
Returns: | |
update for performance text field | |
update for a total number of tokens | |
""" | |
num_current_toks = len(tokenizer.encode(new_gen_text)) | |
num_tokens += num_current_toks | |
per_token_time.append(num_current_toks / current_time) | |
if len(per_token_time) > 10 and len(per_token_time) % 4 == 0: | |
current_bucket = per_token_time[:-10] | |
return ( | |
f"Average generation speed: {np.mean(current_bucket):.2f} tokens/s. Total generated tokens: {num_tokens}", | |
num_tokens, | |
) | |
return current_perf_text, num_tokens | |
def run_generation( | |
user_text: str, | |
top_p: float, | |
temperature: float, | |
top_k: int, | |
max_new_tokens: int, | |
perf_text: str, | |
): | |
""" | |
Text generation function | |
Parameters: | |
user_text (str): User-provided instruction for a generation. | |
top_p (float): Nucleus sampling. If set to < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for a generation. | |
temperature (float): The value used to module the logits distribution. | |
top_k (int): The number of highest probability vocabulary tokens to keep for top-k-filtering. | |
max_new_tokens (int): Maximum length of generated sequence. | |
perf_text (str): Content of text field for printing performance results. | |
Returns: | |
model_output (str) - model-generated text | |
perf_text (str) - updated perf text filed content | |
""" | |
# Prepare input prompt according to model expected template | |
prompt_text = prompt_template.format(instruction=user_text) | |
# Tokenize the user text. | |
model_inputs = tokenizer(prompt_text, return_tensors="pt", **tokenizer_kwargs) | |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer | |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=float(temperature), | |
top_k=top_k, | |
eos_token_id=end_key_token_id, | |
pad_token_id=pad_token_id, | |
) | |
t = Thread(target=ov_model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Pull the generated text from the streamer, and update the model output. | |
model_output = "" | |
per_token_time = [] | |
num_tokens = 0 | |
start = perf_counter() | |
for new_text in streamer: | |
current_time = perf_counter() - start | |
model_output += new_text | |
perf_text, num_tokens = estimate_latency(current_time, perf_text, new_text, per_token_time, num_tokens) | |
yield model_output, perf_text | |
start = perf_counter() | |
return model_output, perf_text | |
def reset_textbox(instruction: str, response: str, perf: str): | |
""" | |
Helper function for resetting content of all text fields | |
Parameters: | |
instruction (str): Content of user instruction field. | |
response (str): Content of model response field. | |
perf (str): Content of performance info filed | |
Returns: | |
empty string for each placeholder | |
""" | |
return "", "", "" | |
examples = [ | |
"Give me a recipe for pizza with pineapple", | |
"Write me a tweet about the new OpenVINO release", | |
"Explain the difference between CPU and GPU", | |
"Give five ideas for a great weekend with family", | |
"Do Androids dream of Electric sheep?", | |
"Who is Dolly?", | |
"Please give me advice on how to write resume?", | |
"Name 3 advantages to being a cat", | |
"Write instructions on how to become a good AI engineer", | |
"Write a love letter to my best friend", | |
] | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
"# Question Answering with Model and OpenVINO.\n" | |
"Provide instruction which describes a task below or select among predefined examples and model writes response that performs requested task." | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
user_text = gr.Textbox( | |
placeholder="Write an email about an alpaca that likes flan", | |
label="User instruction", | |
) | |
model_output = gr.Textbox(label="Model response", interactive=False) | |
performance = gr.Textbox(label="Performance", lines=1, interactive=False) | |
with gr.Column(scale=1): | |
button_clear = gr.Button(value="Clear") | |
button_submit = gr.Button(value="Submit") | |
gr.Examples(examples, user_text) | |
with gr.Column(scale=1): | |
max_new_tokens = gr.Slider( | |
minimum=1, | |
maximum=1000, | |
value=256, | |
step=1, | |
interactive=True, | |
label="Max New Tokens", | |
) | |
top_p = gr.Slider( | |
minimum=0.05, | |
maximum=1.0, | |
value=0.92, | |
step=0.05, | |
interactive=True, | |
label="Top-p (nucleus sampling)", | |
) | |
top_k = gr.Slider( | |
minimum=0, | |
maximum=50, | |
value=0, | |
step=1, | |
interactive=True, | |
label="Top-k", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=5.0, | |
value=0.8, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
user_text.submit( | |
run_generation, | |
[user_text, top_p, temperature, top_k, max_new_tokens, performance], | |
[model_output, performance], | |
) | |
button_submit.click( | |
run_generation, | |
[user_text, top_p, temperature, top_k, max_new_tokens, performance], | |
[model_output, performance], | |
) | |
button_clear.click( | |
reset_textbox, | |
[user_text, model_output, performance], | |
[user_text, model_output, performance], | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
try: | |
demo.launch(height=800) | |
except Exception: | |
demo.launch(share=True, height=800) | |
# Call main function to start Gradio interface | |
main() |