magicfixeseverything commited on
Commit
9add88b
·
1 Parent(s): 9f745a7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3021 -52
app.py CHANGED
@@ -1,65 +1,3034 @@
1
  import gradio as gr
2
  import torch
3
- import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
- from diffusers import DiffusionPipeline
7
 
8
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  if torch.cuda.is_available():
11
- PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 8000}
12
- torch.cuda.max_memory_allocated(device=device)
 
 
 
 
 
 
 
13
  torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
16
- pipe.enable_xformers_memory_efficient_attention()
17
- pipe = pipe.to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
21
- refiner.enable_xformers_memory_efficient_attention()
22
- refiner = refiner.to(device)
23
- torch.cuda.empty_cache()
 
 
24
 
25
- upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
26
- upscaler.enable_xformers_memory_efficient_attention()
27
- upscaler = upscaler.to(device)
28
- torch.cuda.empty_cache()
29
- else:
30
- pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
31
- pipe = pipe.to(device)
32
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
33
- refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
34
- refiner = refiner.to(device)
35
- refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
36
-
37
- def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaling, prompt_2, negative_prompt_2, high_noise_frac, n_steps):
38
- generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
39
- int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
40
- if upscaling == 'Yes':
41
- image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps, denoising_start=high_noise_frac).images[0] #num_inference_steps=n_steps,
42
- upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
43
- torch.cuda.empty_cache()
44
- return (image, upscaled)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  else:
46
- image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps ,denoising_start=high_noise_frac).images[0]
47
- torch.cuda.empty_cache()
48
- return (image, image)
49
-
50
- gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!'),
51
- gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
52
- gr.Slider(512, 1024, 768, step=128, label='Height'),
53
- gr.Slider(512, 1024, 768, step=128, label='Width'),
54
- gr.Slider(1, 15, 10, step=.25, label='Guidance Scale: How Closely the AI follows the Prompt'),
55
- gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
56
- gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True, label='Seed: 0 is Random'),
57
- gr.Radio(['Yes', 'No'], value='No', label='Upscale?'),
58
- gr.Textbox(label='Embedded Prompt'),
59
- gr.Textbox(label='Embedded Negative Prompt'),
60
- gr.Slider(minimum=.7, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
61
- gr.Slider(minimum=1, maximum=100, value=100, step=1, label='Refiner Number of Iterations %')],
62
- outputs=['image', 'image'],
63
- title="Stable Diffusion XL 1.0 GPU",
64
- description="SDXL 1.0 GPU. <br><br><b>WARNING: Capable of producing NSFW (Softcore) images.</b>",
65
- article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import torch
3
+ #import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
+ from diffusers import DiffusionPipeline
7
 
8
+ ##########
9
+
10
+ #
11
+ # Original script by:
12
+ # https://huggingface.co/Manjushri
13
+ #
14
+ # This version have been adapted from that person's versions.
15
+ #
16
+
17
+ ##########
18
+
19
+
20
+ # Tested with gradio version 4.8.0
21
+ # https://www.gradio.app/main/docs/interface
22
+
23
+ ##########
24
+
25
+ # To launch this script, use the following in the command prompt, taking off
26
+ # the # at the start. (You will need to adjust the start of the path if you
27
+ # have changed the location)
28
+
29
+ #cd C:\Diffusers && .venv\Scripts\activate.bat && py .venv\sdxl_and_photoreal\sdxl_and_photoreal.py
30
+
31
+ ##########
32
+
33
+ # IMPORTANT NOTES:
34
+ #
35
+ # You must have a NVIDIA graphics card in your computer with Cuda
36
+ # installed to use this script. It will not work on just a CPU on
37
+ # Windows.
38
+ #
39
+ # If not using "enable_model_cpu_offload" or
40
+ # "enable_sequential_cpu_offload", memory usage will remain high until
41
+ # command prompt is closed. (whether image is being created or not)
42
+
43
+ ###############################################################################
44
+ ###############################################################################
45
+ #
46
+ #
47
+ #
48
+ # Begin Configurations
49
+ #
50
+ #
51
+ #
52
+ ###############################################################################
53
+ ###############################################################################
54
+
55
+ #
56
+ # Main Directory
57
+ #
58
+ # This is where everything goes. Your Python virtual environment should
59
+ # be here. Model data will be stored here. (unless you change the next
60
+ # configuration) If configured, imagery will also be automatically be
61
+ # saved here.
62
+ #
63
+
64
+ main_dir = "C:/Diffusers"
65
+
66
+ ####################
67
+
68
+ #
69
+ # Use Custom HuggingFace Cache Directory
70
+ #
71
+ # The folder where model data is stored can get huge. I choose to add it
72
+ # to a place where I am more likely to notice it more often. If you use
73
+ # other HuggingFace things however, and will use these models in those
74
+ # other things, then you might want to consider not having this here as
75
+ # it would duplicate the model data.
76
+ #
77
+ # If set to 1, the data would be here:
78
+ # C:\Diffusers\model_data
79
+ #
80
+ # If set to 0, the data would be here:
81
+ # %USERPROFILE%/.cache/huggingface/hub
82
+ # Which would look like this, where {Username} is the username of
83
+ # your Windows account:
84
+ # C:\Users\{Username}\.cache\huggingface\hub
85
+ #
86
+ # You need to clean out the folder occasionally as this folder will get
87
+ # extremely large. Eventually, it would take up all the space on your
88
+ # computer.
89
+ #
90
+
91
+ use_custom_hugging_face_cache_dir = 1
92
+
93
+ #####
94
+
95
+ #
96
+ # Name of Model Data Folder
97
+ #
98
+ # This is where all the model data will go. (unless you changed it in the
99
+ # previous configuration) This folder will get very large. You need to
100
+ # clean it out manually occasionally.
101
+ #
102
+
103
+ cache_directory_folder_name = "model_data"
104
+
105
+ ####################
106
+
107
+ #
108
+ # Default Base Model
109
+ #
110
+ # This will automatically be SDXL Turbo if you are running this on a CPU.
111
+ #
112
+
113
+ default_base_model = "sdxl"
114
+
115
+ ####################
116
+
117
+ #
118
+ # Auto Save Imagery
119
+ #
120
+ # You can automatically save the image file, and a text file with the
121
+ # prompt details.
122
+ #
123
+
124
+ auto_save_imagery = 1
125
+
126
+ #####
127
+
128
+ #
129
+ # Name of Saved Images Folder
130
+ #
131
+ # You can change the name of this folder if you want. Imagery will be
132
+ # saved in a folder called "saved_images" in the directory configured
133
+ # in "main_dir". (the saved images folder will be created
134
+ # automatically) A directory for each day will be created in this
135
+ # folder. Imagery will then be placed in each folder.
136
+ #
137
+
138
+ saved_images_folder_name = "saved_images"
139
+
140
+ ####################
141
+
142
+ #
143
+ # Auto Open Browser From Command Prompt
144
+ #
145
+
146
+ auto_open_browser = 1
147
+
148
+ ####################
149
+
150
+ #
151
+ # Make Seed Selection A Textbox
152
+ #
153
+ # If you use a slider or number field for the seed, some seeds can't be
154
+ # duplicated using those fields. If you enter a number greater than
155
+ # 9007199254740992, the seed won't reliably be used. Check the text
156
+ # details to see if it was used. This is a technical limitation as of
157
+ # writing this. See the bug report here:
158
+ # https://github.com/gradio-app/gradio/issues/5354
159
+ #
160
+ # Using the slider, and not entering a number, might be the way to get
161
+ # reliable numbers above that number. Just don't then use the up and down
162
+ # arrows in the field to go up or down a number.
163
+ #
164
+ # The way to use seeds higher than that reliably is to set this variable
165
+ # to 1.
166
+
167
+ make_seed_selection_a_textbox = 0
168
+
169
+ ####################
170
+
171
+ #
172
+ # Include Close Command Prompt / Cancel Button
173
+ #
174
+ # This doesn't work well at all. It just closes the command prompt.
175
+ #
176
+
177
+ enable_close_command_prompt_button = 0
178
+
179
+ ####################
180
+
181
+ #
182
+ # Use Denoising Start In Base Model When Using Refiner
183
+ #
184
+ # If set to "1", refining will end at the percent (expressed as decimal)
185
+ # defined in the denoising start for the refiner. If the steps set are
186
+ # 100, and the denoising start value is 0.75, the base model will run for
187
+ # 75 steps. The refiner will then run for 25 steps.
188
+ #
189
+
190
+ default_use_denoising_start_in_base_model_when_using_refiner = 0
191
+
192
+ ####################
193
+
194
+ #
195
+ # Base Model Output To Refiner Is In Latent Space
196
+ #
197
+ # If set to "1", base model output is in latent space instead of PIL
198
+ # image when sent to refiner.
199
+ #
200
+
201
+ default_base_model_output_to_refiner_is_in_latent_space = 1
202
+
203
+ ####################
204
+
205
+ #
206
+ # Log Generation Times
207
+ #
208
+ # Log generation times to saved text output. The initial time it takes to
209
+ # load a model is not included in the generation time.
210
+ #
211
+
212
+ log_generation_times = 1
213
+
214
+ ####################
215
+
216
+ #
217
+ # Use Image Gallery
218
+ #
219
+ # There is a bug in downloading images:
220
+ # https://github.com/gradio-app/gradio/issues/6486
221
+ # Saves as HTML rather than image.
222
+ #
223
+
224
+ use_image_gallery = 1
225
+
226
+ ####################
227
+
228
+ #
229
+ # Up Next Is Various Configuration Arrays and Objects
230
+ #
231
+
232
+ ####################
233
+
234
+ base_model_array = [
235
+ "sdxl",
236
+ "photoreal",
237
+ "sdxl_turbo",
238
+ "sd_1_5_runwayml"
239
+ ]
240
+
241
+ base_model_names_object = {
242
+ "sdxl": "Stable Diffusion XL 1.0",
243
+ "photoreal": "PhotoReal",
244
+ "sdxl_turbo": "Stable Diffusion XL Turbo",
245
+ "sd_1_5_runwayml": "Stable Diffusion 1.5"
246
+ }
247
+
248
+ ####################
249
+
250
+ #
251
+ # "sdxl_default"
252
+ #
253
+ # - My customized configurations. (subject to change)
254
+ #
255
+ # "sdxl_2023-11-12"
256
+ #
257
+ # - Valid from November 12th to present.
258
+ # Number of steps in upscaler changed from 5 to 15.
259
+ #
260
+ # "sdxl_2023-09-05"
261
+ #
262
+ # - Valid from September 5th to November 12th.
263
+ # There were changes on this date.
264
+ #
265
+ # "photoreal_default"
266
+ #
267
+ # - My customized configurations. (subject to change)
268
+ # "circulus/canvers-real-v3.7.5"
269
+ #
270
+ # Seeds do not match the online PhotoReal version.
271
+ #
272
+ # "photoreal_2023-11-12"
273
+ #
274
+ # - Valid from November 12th to present.
275
+ # New base model: "circulus/canvers-real-v3.7.5"
276
+ #
277
+ # "photoreal_2023-09-01"
278
+ #
279
+ # - Valid from September 1st to November 12th.
280
+ # "circulus/canvers-realistic-v3.6" was already in effect.
281
+ # But there were changes on this date.
282
+ #
283
+ # "sdxl_turbo_default"
284
+ #
285
+ # - My customized configurations. (subject to change)
286
+ #
287
+ # "sd_1_5_runwayml_default"
288
+ #
289
+ # - My customized configurations. (subject to change)
290
+ #
291
+
292
+ base_model_object_of_model_configuration_arrays = {
293
+ "sdxl": [
294
+ "sdxl_default",
295
+ "sdxl_2023-11-12",
296
+ "sdxl_2023-09-05"
297
+ ],
298
+ "photoreal": [
299
+ "photoreal_default",
300
+ "photoreal_2023-11-12",
301
+ "photoreal_2023-09-01"
302
+ ],
303
+ "sdxl_turbo": [
304
+ "sdxl_turbo_default"
305
+ ],
306
+ "sd_1_5_runwayml": [
307
+ "sd_1_5_runwayml_default"
308
+ ]
309
+ }
310
+
311
+ ####################
312
+
313
+ model_configuration_names_object = {
314
+ "sdxl_default": "1.0 - Default (subject to change)",
315
+ "sdxl_2023-11-12": "1.0 (2023-11-12 online config)",
316
+ "sdxl_2023-09-05": "1.0 (2023-09-05 online config)",
317
+ "photoreal_default": "3.7.5 - Default (subject to change)",
318
+ "photoreal_2023-11-12": "3.7.5 (2023-11-12 online config)",
319
+ "photoreal_2023-09-01": "3.6 (2023-09-01 online config)",
320
+ "sdxl_turbo_default": "Default (subject to change)",
321
+ "sd_1_5_runwayml_default": "1.5 - Default (subject to change)"
322
+ }
323
+
324
+ model_configuration_links_object = {
325
+ "sdxl_default": "stabilityai/stable-diffusion-xl-base-1.0",
326
+ "sdxl_2023-11-12": "stabilityai/stable-diffusion-xl-base-1.0",
327
+ "sdxl_2023-09-05": "stabilityai/stable-diffusion-xl-base-1.0",
328
+ "photoreal_default": "circulus/canvers-real-v3.7.5",
329
+ "photoreal_2023-11-12": "circulus/canvers-real-v3.7.5",
330
+ "photoreal_2023-09-01": "circulus/canvers-realistic-v3.6",
331
+ "sdxl_turbo_default": "stabilityai/sdxl-turbo",
332
+ "sd_1_5_runwayml_default": "runwayml/stable-diffusion-v1-5"
333
+ }
334
+
335
+ model_configuration_force_refiner_object = {
336
+ "sdxl_2023-11-12": 1,
337
+ "sdxl_2023-09-05": 1
338
+ }
339
+
340
+ ####################
341
+
342
+ base_model_model_configuration_defaults_object = {
343
+ "sdxl": "sdxl_default",
344
+ "photoreal": "photoreal_default",
345
+ "sdxl_turbo": "sdxl_turbo_default",
346
+ "sd_1_5_runwayml": "sd_1_5_runwayml_default"
347
+ }
348
+
349
+ ####################
350
+
351
+ #
352
+ # Links:
353
+ #
354
+ # SD-XL 1.0-base Model Card
355
+ # https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
356
+ #
357
+ # SD-XL 1.0-refiner Model Card
358
+ # https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0
359
+ #
360
+ # Stable Diffusion x2 latent upscaler model card
361
+ # https://huggingface.co/stabilityai/sd-x2-latent-upscaler
362
+ #
363
+ # PhotoReal
364
+ # 3.7.5: https://huggingface.co/circulus/canvers-real-v3.7.5
365
+ # 3.6: https://huggingface.co/circulus/canvers-realistic-v3.6
366
+ #
367
+ # SDXL Turbo
368
+ # https://huggingface.co/stabilityai/sdxl-turbo
369
+ #
370
+ # Stable Diffusion v1-5 (runwayml)
371
+ # https://huggingface.co/runwayml/stable-diffusion-v1-5
372
+ #
373
+
374
+ ####################
375
+
376
+ #
377
+ # Determine automatically if on CPU or GPU
378
+ #
379
+ # CPU will not work on Windows.
380
+ #
381
+
382
+ device = "cpu"
383
 
384
  if torch.cuda.is_available():
385
+
386
+ device = "cuda"
387
+
388
+ PYTORCH_CUDA_ALLOC_CONF = {
389
+ "max_split_size_mb": 8000
390
+ }
391
+ torch.cuda.max_memory_allocated(
392
+ device = device
393
+ )
394
  torch.cuda.empty_cache()
395
+
396
+ if device == "cpu":
397
+
398
+ default_base_model = "sdxl_turbo"
399
+
400
+ ####################
401
+
402
+ default_prompt = ""
403
+ default_negative_prompt = ""
404
+
405
+ default_width = 768
406
+ default_height = 768
407
+
408
+ default_guidance_scale_value = 7
409
+
410
+ default_base_model_base_model_num_inference_steps = 50
411
+ default_base_model_base_model_num_inference_steps_for_sdxl_turbo = 2
412
+
413
+ default_seed_maximum = 999999999999999999
414
+ default_seed_value = 876678173805928800
415
+
416
+ # If you turn off the refiner it will not be available in the display unless
417
+ # you select an online configuration option that requires it.
418
+
419
+ enable_refiner = 1
420
+ enable_upscaler = 1
421
+
422
+ # Selected on form as a default?
423
+
424
+ default_refiner_selected = 0
425
+ default_upscaler_selected = 0
426
+
427
+ # xFormers:
428
+ #
429
+ # https://huggingface.co/docs/diffusers/optimization/xformers
430
+
431
+ use_xformers = 1
432
+
433
+ # Scaled dot product attention (SDPA) is used by default for PyTorch 2.0. To
434
+ # use default instead, set this to 1.
435
+ #
436
+ # https://huggingface.co/docs/diffusers/optimization/torch2.0#scaled-dot-product-attention
437
+
438
+ use_default_attn_processor = 0
439
+
440
+ display_xformers_usage_in_prompt_info = 1
441
+ include_transformers_version_in_prompt_info = 1
442
+ display_default_attn_processor_usage_in_prompt_info = 1
443
+
444
+ # You can't select both sequential and model cpu offloading. If you select
445
+ # both, model cpu offloading will be used.
446
+
447
+ use_sequential_cpu_offload_for_base_model = 1
448
+ use_sequential_cpu_offload_for_refiner = 1
449
+ use_sequential_cpu_offload_for_upscaler = 1
450
+
451
+ use_model_cpu_offload_for_base_model = 0
452
+ use_model_cpu_offload_for_refiner = 0
453
+ use_model_cpu_offload_for_upscaler = 0
454
+
455
+
456
+
457
+ if default_base_model == "photoreal":
458
+
459
+ # PhotoReal
460
+
461
+ default_seed_value = 3648905360627576
462
+
463
+ elif default_base_model == "sdxl_turbo":
464
+
465
+ # SDXL Turbo
466
+
467
+ default_seed_value = 2725116121543
468
+
469
+ #elif default_base_model == "sd_1_5_runwayml":
470
+
471
+ # SD 1.5
472
+
473
 
474
+
475
+ else:
476
+
477
+ # SDXL
478
+
479
+ default_width = 1024
480
+ default_height = 1024
481
+ default_guidance_scale_value = 10
482
+
483
+
484
+
485
+ # Must be multiple of 8
486
+
487
+ width_and_height_input_slider_steps = 8
488
+
489
+
490
+
491
+ show_messages_in_command_prompt = 1
492
+ show_messages_in_modal_on_page = 1
493
+
494
+
495
+
496
+ opening_html = ""
497
+
498
+ if device == "cpu":
499
+
500
+ opening_html = "<span style=\"font-weight: bold; color: red;\">THIS APP IS EXCEPTIONALLY SLOW!</span><br/>This app is not running on a GPU. The first time it loads after the space is rebuilt it might take 10 minutes to generate a SDXL Turbo image. It may take two minutes after that point. For other models, it may take hours to create a single image!"
501
+
502
+
503
+
504
+ ending_html = """This app allows you to try to match images that can be generated using several tools online. (<a href=\"https://huggingface.co/spaces/Manjushri/SDXL-1.0\" target=\"_blank\">Stable Diffusion XL</a>, <a href=\"https://huggingface.co/spaces/Manjushri/PhotoReal-V3.7.5\" target=\"_blank\">PhotoReal with SDXL 1.0 Refiner</a> and <a href=\"https://huggingface.co/spaces/diffusers/unofficial-SDXL-Turbo-i2i-t2i\" target=\"_blank\">SDXL Turbo Unofficial Demo</a>) You can select the base model you want to use in the first dropdown option. The second configuration option involves choosing which version and/or configuration to choose. Certain configurations try to match the version online, taking into account changes that were made over time. Another configuration involves a default configuration I choose and is subject to change while I am still designing this app.
505
+
506
+ Tokens are not individual characters. If the prompt length is too long, the display will notify you what part of the prompt wasn't used. Changing just the image dimensions alone will change the image generated. For some models, trying to make a large image, such as 1024x1024, may add extra people and come out worse than using smaller dimensions. If you have a seed greater than 9007199254740992, it may not be processed correctly. Make sure the prompt matches the seed you entered. (shown in the \"Prompt Information\" section once you create an image) If it doesn't, set \"make_seed_selection_a_textbox\" to 1 in the script. This bug is described <a href=\"https://github.com/gradio-app/gradio/issues/5354\" target=\"_blank\">here</a>.
507
+
508
+ The original script for this app was written by <a href=\"https://huggingface.co/Manjushri\" target=\"_blank\">Manjushri</a>."""
509
+
510
+
511
+
512
+ refiner_and_upscaler_status_opening_html = "<div style=\"text-align: center;\">"
513
+
514
+ refiner_and_upscaler_status_closing_html = "</div>"
515
+
516
+ refiner_on_text = "Refiner is on. "
517
+ refiner_off_text = "Refiner is off. "
518
+
519
+ upscaler_on_text = "Upscaler is on. "
520
+ upscaler_off_text = "Upscaler is off. "
521
+
522
+ number_of_reserved_tokens = 2
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+ # This will eventually be a configuration option...
531
+
532
+ # "pil" image
533
+ # "latent" latent space
534
+
535
+ which_output_type_before_refiner_and_upscaler = "latent"
536
+
537
+
538
+
539
+ ###############################################################################
540
+ ###############################################################################
541
+ #
542
+ #
543
+ #
544
+ # End Configurations
545
+ #
546
+ #
547
+ #
548
+ ###############################################################################
549
+ ###############################################################################
550
+
551
+
552
+ import os
553
+
554
+ #script_being_run_on_hugging_face = 0
555
+
556
+ try:
557
+ if (os.uname().find("magicfixeseverything") >= 0):
558
+ script_being_run_on_hugging_face = 0
559
+ except:
560
+ script_being_run_on_hugging_face = 0
561
+
562
+
563
+
564
+ if device == "cuda":
565
+
566
+ PYTORCH_CUDA_ALLOC_CONF = {
567
+ "max_split_size_mb": 8000
568
+ }
569
+ torch.cuda.max_memory_allocated(
570
+ device = device
571
+ )
572
  torch.cuda.empty_cache()
573
+
574
+
575
+
576
+ if script_being_run_on_hugging_face == 1:
577
+
578
+ use_custom_hugging_face_cache_dir = 0
579
+ show_messages_in_modal_on_page = 0
580
+
581
+
582
+
583
+ saved_images_dir = main_dir + "/" + saved_images_folder_name
584
+
585
+ hugging_face_cache_dir = main_dir + "/" + cache_directory_folder_name
586
+
587
+ if not os.path.exists(hugging_face_cache_dir):
588
+ os.makedirs(hugging_face_cache_dir)
589
+
590
+
591
+
592
+
593
+
594
+
595
+
596
+ os.environ["HF_HUB_OFFLINE"] = "1"
597
+
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+ if auto_save_imagery == 1:
611
+
612
+ from datetime import datetime
613
+ import time
614
+
615
+
616
+
617
+ if log_generation_times == 1:
618
+
619
+ import time
620
+
621
+
622
+
623
+ if device == "cpu":
624
+
625
+ use_sequential_cpu_offload_for_base_model = 0
626
+ use_sequential_cpu_offload_for_refiner = 0
627
+ use_sequential_cpu_offload_for_upscaler = 0
628
+
629
+ use_model_cpu_offload_for_base_model = 0
630
+ use_model_cpu_offload_for_refiner = 0
631
+ use_model_cpu_offload_for_upscaler = 0
632
+
633
+ use_xformers = 0
634
+
635
+
636
+
637
+ if (
638
+ (use_sequential_cpu_offload_for_base_model == 1) and
639
+ (use_model_cpu_offload_for_base_model == 1)
640
+ ):
641
 
642
+ use_sequential_cpu_offload_for_base_model = 0
643
+
644
+ if (
645
+ (use_sequential_cpu_offload_for_refiner == 1) and
646
+ (use_model_cpu_offload_for_refiner == 1)
647
+ ):
648
 
649
+ use_sequential_cpu_offload_for_refiner = 0
650
+
651
+ if (
652
+ (use_sequential_cpu_offload_for_upscaler == 1) and
653
+ (use_model_cpu_offload_for_upscaler == 1)
654
+ ):
655
+
656
+ use_sequential_cpu_offload_for_upscaler = 0
657
+
658
+
659
+
660
+ def error_function(
661
+ text_message
662
+ ):
663
+
664
+ print (text_message)
665
+
666
+ gr.Error(text_message)
667
+
668
+ exit(1)
669
+
670
+
671
+
672
+ # Don't change this one
673
+
674
+ default_model_configuration_object = {
675
+ "sdxl_default": 1,
676
+ "photoreal_default": 1,
677
+ "sdxl_turbo_default": 1,
678
+ "sd_1_5_runwayml_default": 1
679
+ }
680
+
681
+
682
+
683
+ additional_prompt_info_html = ""
684
+
685
+ if auto_save_imagery == 1:
686
+
687
+ additional_prompt_info_html = " The image, and a text file with generation information, will be saved automatically."
688
+
689
+
690
+
691
+ if use_xformers == 1:
692
+
693
+ from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
694
+
695
+ if use_default_attn_processor == 1:
696
+
697
+ from diffusers.models.attention_processor import AttnProcessor
698
+
699
+
700
+
701
+ if (
702
+ default_base_model and
703
+ (default_base_model in base_model_object_of_model_configuration_arrays) and
704
+ (default_base_model in base_model_model_configuration_defaults_object)
705
+ ):
706
+
707
+ default_model_configuration = base_model_model_configuration_defaults_object[default_base_model]
708
+
709
+ if default_model_configuration in model_configuration_names_object:
710
+
711
+ default_model_configuration_choices_array = []
712
+
713
+ for this_model_configuration in base_model_object_of_model_configuration_arrays[default_base_model]:
714
+
715
+ if model_configuration_names_object[this_model_configuration]:
716
+
717
+ default_model_configuration_choices_array.append(
718
+ model_configuration_names_object[this_model_configuration]
719
+ )
720
+
721
+ else:
722
+
723
+ error_function("A default configuration must be properly named in the code.")
724
+
725
  else:
726
+
727
+ error_function("A default configuration must be properly configured in the code.")
728
+
729
+ else:
730
+
731
+ error_function("A default base model must be properly configured in the code.")
732
+
733
+
734
+
735
+ default_base_model_nicely_named_value = base_model_names_object[default_base_model]
736
+
737
+ default_model_configuration_nicely_named_value = model_configuration_names_object[default_model_configuration]
738
+
739
+
740
+
741
+ if enable_refiner != 1:
742
+
743
+ default_refiner_selected = 0
744
+
745
+ if enable_upscaler != 1:
746
+
747
+ default_upscaler_selected = 0
748
+
749
+
750
+
751
+ model_configuration_requires_refiner = 0
752
+
753
+ if default_model_configuration in model_configuration_force_refiner_object:
754
+
755
+ model_configuration_requires_refiner = model_configuration_force_refiner_object[default_model_configuration]
756
+
757
+ if model_configuration_requires_refiner == 1:
758
+
759
+ enable_refiner = 1
760
+ default_refiner_selected = 1
761
+
762
+ default_refine_option = "No"
763
+
764
+ if default_refiner_selected == 1:
765
+
766
+ default_refine_option = "Yes"
767
+
768
+ default_upscale_option = "No"
769
+
770
+ if default_upscaler_selected == 1:
771
+
772
+ default_upscale_option = "Yes"
773
+
774
+ is_default_config = 0
775
+
776
+ if default_model_configuration in default_model_configuration_object:
777
+
778
+ is_default_config = 1
779
+
780
+ default_refiner_and_upscaler_status_text = refiner_and_upscaler_status_opening_html
781
+
782
+
783
+
784
+ refiner_default_config_accordion_visible = True
785
+
786
+ if (
787
+ (enable_refiner != 1) or
788
+ (is_default_config != 1)
789
+ ):
790
+
791
+ refiner_default_config_accordion_visible = False
792
+
793
+ refiner_default_config_accordion_open = False
794
+
795
+ if (
796
+ (is_default_config == 1) and
797
+ (default_refiner_selected == 1)
798
+ ):
799
+
800
+ refiner_default_config_accordion_open = True
801
+
802
+
803
+
804
+ refiner_online_config_accordion_visible = True
805
+
806
+ if (
807
+ (enable_refiner != 1) or
808
+ (is_default_config == 1)
809
+ ):
810
+
811
+ refiner_online_config_accordion_visible = False
812
+
813
+ refiner_online_config_accordion_open = False
814
+
815
+ if (
816
+ (is_default_config != 1) and
817
+ (default_refiner_selected == 1)
818
+ ):
819
+
820
+ refiner_online_config_accordion_open = True
821
+
822
+ refiner_group_visible = False
823
+
824
+ if enable_refiner == 1:
825
+
826
+ refiner_group_visible = True
827
+
828
+ if default_refiner_selected == 1:
829
+
830
+ default_refiner_and_upscaler_status_text += refiner_on_text
831
+
832
+ else:
833
+
834
+ default_refiner_and_upscaler_status_text += refiner_off_text
835
+
836
+
837
+
838
+ upscaler_accordion_open = False
839
+
840
+ if default_upscaler_selected == 1:
841
+
842
+ upscaler_accordion_open = True
843
+
844
+ upscaler_group_visible = False
845
+
846
+ if enable_upscaler == 1:
847
+
848
+ upscaler_group_visible = True
849
+
850
+ if default_upscaler_selected == 1:
851
+
852
+ default_refiner_and_upscaler_status_text += upscaler_on_text
853
+
854
+ else:
855
+
856
+ default_refiner_and_upscaler_status_text += upscaler_off_text
857
+
858
+
859
+
860
+ default_refiner_and_upscaler_status_text += refiner_and_upscaler_status_closing_html
861
+
862
+
863
+
864
+ image_gallery_array = []
865
+ prompt_information_array = []
866
+
867
+
868
+
869
+ default_negative_prompt_field_visibility = True
870
+ default_negative_prompt_for_sdxl_turbo_field_visibility = False
871
+ default_base_model_num_inference_steps_field_visibility = True
872
+ default_base_model_num_inference_steps_field_for_sdxl_turbo_field_visibility = False
873
+ default_guidance_scale_field_visibility = True
874
+ default_guidance_scale_for_sdxl_turbo_field_visibility = False
875
+
876
+ if default_base_model == "sdxl_turbo":
877
+
878
+ default_negative_prompt_field_visibility = False
879
+ default_negative_prompt_for_sdxl_turbo_field_visibility = True
880
+ default_base_model_num_inference_steps_field_visibility = False
881
+ default_base_model_num_inference_steps_field_for_sdxl_turbo_field_visibility = True
882
+ default_guidance_scale_field_visibility = False
883
+ default_guidance_scale_for_sdxl_turbo_field_visibility = True
884
+
885
+
886
+
887
+ global pipe
888
+ global refiner
889
+ global upscaler
890
+
891
+ last_model_configuration_name_value = ""
892
+ last_refiner_selected = ""
893
+ last_upscaler_selected = ""
894
+
895
+
896
+
897
+ default_base_model_choices_array = []
898
+
899
+ stored_model_configuration_names_object = {}
900
+
901
+ for this_base_model in base_model_array:
902
+
903
+ default_base_model_choices_array.append(
904
+ base_model_names_object[this_base_model]
905
+ )
906
+
907
+ stored_model_configuration = base_model_model_configuration_defaults_object[this_base_model]
908
+
909
+ stored_model_configuration_names_object[this_base_model] = model_configuration_names_object[stored_model_configuration]
910
+
911
+
912
+
913
+ ###############################################################################
914
+ ###############################################################################
915
+ #
916
+ #
917
+ #
918
+ #
919
+ #
920
+ #
921
+ # Functions
922
+ #
923
+ #
924
+ #
925
+ #
926
+ #
927
+ #
928
+ ###############################################################################
929
+ ###############################################################################
930
+
931
+
932
+
933
+
934
+
935
+
936
+
937
+ #####################
938
+ #
939
+ # Show Message
940
+ #
941
+ # Display message to user in model on web form and/or command prompt.
942
+ #
943
+ #####################
944
+
945
+ def show_message(
946
+ message_to_display
947
+ ):
948
+
949
+ if show_messages_in_command_prompt == 1:
950
+
951
+ print (message_to_display)
952
+
953
+ if show_messages_in_modal_on_page == 1:
954
+
955
+ gr.Info(message_to_display)
956
+
957
+
958
+
959
+
960
+
961
+
962
+
963
+ #####################
964
+ #
965
+ # Convert Seconds
966
+ #
967
+ # Convert raw seconds to the numer of hours, minutes and seconds.
968
+ #
969
+ #####################
970
+
971
+ def convert_seconds(
972
+ seconds
973
+ ):
974
+
975
+ # Google AI Code
976
+
977
+ hours = seconds // 3600
978
+ minutes = (seconds % 3600) // 60
979
+ seconds = seconds % 60
980
+ return hours, minutes, seconds
981
+
982
+
983
+
984
+
985
+
986
+
987
+
988
+ #####################
989
+ #
990
+ # Seed Not Valid
991
+ #
992
+ # Return True if seed is not valid.
993
+ #
994
+ #####################
995
+
996
+ def seed_not_valid(seed_num_str):
997
+ try:
998
+ seed_num = int(seed_num_str)
999
+ if (seed_num > 0) and (seed_num < default_seed_maximum):
1000
+ return False
1001
+ else:
1002
+ return True
1003
+ except ValueError:
1004
+ return True
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+ #####################
1013
+ #
1014
+ # Numerical Bool
1015
+ #
1016
+ # Return 1 for anything that is True/Yes/1. Everything else is False.
1017
+ #
1018
+ #####################
1019
+
1020
+ def numerical_bool(
1021
+ original_value
1022
+ ):
1023
+
1024
+ new_value = 0
1025
+
1026
+ if (
1027
+ (original_value == 1) or
1028
+ (original_value == "Yes") or
1029
+ (original_value == "True") or
1030
+ (original_value == True)
1031
+ ):
1032
+
1033
+ new_value = 1
1034
+
1035
+ return new_value
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+ #####################
1044
+ #
1045
+ # Truncate Prompt
1046
+ #
1047
+ # Truncate a prompt. Get the actual prompt that will be used and save the
1048
+ # part of the prompt that will not be used.
1049
+ #
1050
+ #####################
1051
+
1052
+ def truncate_prompt (
1053
+ existing_prompt_text
1054
+ ):
1055
+
1056
+ # Only 77 tokens are allowed in the prompt. 2 are reserved, meaning it is
1057
+ # truncated to 75. This happens automatically, but we want to tell people
1058
+ # that
1059
+
1060
+ tokenizer = pipe.tokenizer
1061
+
1062
+ max_token_length_of_model = pipe.tokenizer.model_max_length - number_of_reserved_tokens
1063
+
1064
+ prompt_text_words_array = existing_prompt_text.split(" ")
1065
+
1066
+ prompt_text_words_array_length = len(prompt_text_words_array)
1067
+
1068
+ prompt_text_words_index = 0
1069
+
1070
+ prompt_text_substring = ""
1071
+ prompt_text_not_used_substring = ""
1072
+
1073
+ for prompt_text_word in prompt_text_words_array:
1074
+
1075
+ prompt_text_words_index += 1
1076
+
1077
+ substring_to_test = prompt_text_substring
1078
+
1079
+ if prompt_text_words_index > 1:
1080
+
1081
+ substring_to_test += " "
1082
+
1083
+ substring_to_test += prompt_text_word
1084
+
1085
+ token_length_of_substring_to_test = len(tokenizer.tokenize(substring_to_test))
1086
+
1087
+ if token_length_of_substring_to_test > max_token_length_of_model:
1088
+
1089
+ prompt_text_not_used_substring += prompt_text_word + " "
1090
+
1091
+ else:
1092
+
1093
+ prompt_text_substring = substring_to_test
1094
+
1095
+ return (
1096
+ prompt_text_substring,
1097
+ prompt_text_not_used_substring
1098
+ )
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+ #####################
1107
+ #
1108
+ # Update Prompt Info From Gallery
1109
+ #
1110
+ # If you select an image in the image gallery, display the prompt
1111
+ # information for that image.
1112
+ #
1113
+ #####################
1114
+
1115
+ def update_prompt_info_from_gallery (
1116
+ gallery_data: gr.SelectData
1117
+ ):
1118
+
1119
+ gallery_data_index = gallery_data.index
1120
+
1121
+ output_image_field_update = gr.Gallery(
1122
+ selected_index = gallery_data_index
1123
+ )
1124
+
1125
+ output_text_field_update = prompt_information_array[gallery_data_index]
1126
+
1127
+ return {
1128
+ output_image_field: output_image_field_update,
1129
+ output_text_field: output_text_field_update
1130
+ }
1131
+
1132
+
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+ #####################
1139
+ #
1140
+ # Create Image Function
1141
+ #
1142
+ # This is the main image creation function.
1143
+ #
1144
+ #####################
1145
+
1146
+ def create_image_function (
1147
+ base_model_field_index,
1148
+ model_configuration_field_index,
1149
+ prompt_text,
1150
+ negative_prompt_text,
1151
+ image_width,
1152
+ image_height,
1153
+ guidance_scale,
1154
+ base_model_num_inference_steps,
1155
+ base_model_num_inference_steps_field_for_sdxl_turbo,
1156
+ actual_seed,
1157
+
1158
+ refining_selection_online_config_normal_field_value,
1159
+ refining_selection_online_config_automatically_selected_field_value,
1160
+
1161
+ refining_use_denoising_start_in_base_model_when_using_refiner_field_value,
1162
+ refining_base_model_output_to_refiner_is_in_latent_space_field_value,
1163
+
1164
+ refining_denoise_start_for_online_config_field_value,
1165
+ refining_number_of_iterations_for_online_config_field_value,
1166
+
1167
+ upscaling_selection_field_value,
1168
+ upscaling_num_inference_steps
1169
+ ):
1170
+
1171
+ refining_selection_online_config_normal_field_value = numerical_bool(refining_selection_online_config_normal_field_value)
1172
+ refining_selection_online_config_automatically_selected_field_value = numerical_bool(refining_selection_online_config_automatically_selected_field_value)
1173
+
1174
+
1175
+ refining_use_denoising_start_in_base_model_when_using_refiner_field_value = numerical_bool(refining_use_denoising_start_in_base_model_when_using_refiner_field_value)
1176
+ refining_base_model_output_to_refiner_is_in_latent_space_field_value = numerical_bool(refining_base_model_output_to_refiner_is_in_latent_space_field_value)
1177
+
1178
+ use_upscaler = numerical_bool(upscaling_selection_field_value)
1179
+
1180
+
1181
+
1182
+ base_model_name_value = base_model_array[base_model_field_index]
1183
+ model_configuration_name_value = base_model_object_of_model_configuration_arrays[base_model_name_value][model_configuration_field_index]
1184
+
1185
+
1186
+
1187
+ is_config_state = 0
1188
+
1189
+ if model_configuration_name_value in default_model_configuration_object:
1190
+
1191
+ is_config_state = 1
1192
+
1193
+ use_refiner = 0
1194
+
1195
+
1196
+
1197
+ if (
1198
+ (
1199
+ (is_config_state == 1) and
1200
+ refining_selection_online_config_normal_field_value
1201
+ ) or (
1202
+ (is_config_state != 1) and
1203
+ refining_selection_online_config_automatically_selected_field_value
1204
+ )
1205
+ ):
1206
+
1207
+ use_refiner = 1
1208
+
1209
+
1210
+
1211
+ if base_model_name_value == "sdxl_turbo":
1212
+
1213
+ negative_prompt_text = ""
1214
+ base_model_num_inference_steps = base_model_num_inference_steps_field_for_sdxl_turbo
1215
+ guidance_scale = 0
1216
+
1217
+
1218
+
1219
+ global last_model_configuration_name_value
1220
+
1221
+ global pipe
1222
+ global refiner
1223
+ global upscaler
1224
+
1225
+ global image_gallery_array
1226
+ global prompt_information_array
1227
+
1228
+ if (
1229
+ (last_model_configuration_name_value == "") or
1230
+ (model_configuration_name_value != last_model_configuration_name_value)
1231
+ ):
1232
+
1233
+ show_message("Loading base model...")
1234
+
1235
+ if (last_model_configuration_name_value != ""):
1236
+
1237
+ del pipe
1238
+
1239
+ if 'refiner' in globals():
1240
+ del refiner
1241
+
1242
+ if 'upscaler' in globals():
1243
+ del upscaler
1244
+
1245
+ import gc
1246
+
1247
+ gc.collect()
1248
+
1249
+ if device == "cuda":
1250
+ torch.cuda.empty_cache()
1251
+
1252
+ if base_model_name_value == "photoreal":
1253
+
1254
+ base_model_kwargs = {
1255
+ "safety_checker": None,
1256
+ "requires_safety_checker": False
1257
+ }
1258
+
1259
+ elif base_model_name_value == "sdxl_turbo":
1260
+
1261
+ base_model_kwargs = {
1262
+ "use_safetensors": True,
1263
+ "safety_checker": None
1264
+ }
1265
+
1266
+ if device == "cuda":
1267
+
1268
+ base_model_kwargs["variant"] = "fp16"
1269
+
1270
+ else:
1271
+
1272
+ base_model_kwargs = {
1273
+ "use_safetensors": True
1274
+ }
1275
+
1276
+ if device == "cuda":
1277
+
1278
+ base_model_kwargs["variant"] = "fp16"
1279
+
1280
+ if device == "cuda":
1281
+
1282
+ base_model_kwargs["torch_dtype"] = torch.float16
1283
+
1284
+ if use_custom_hugging_face_cache_dir == 1:
1285
+
1286
+ base_model_kwargs["cache_dir"] = hugging_face_cache_dir
1287
+
1288
+ pipe = DiffusionPipeline.from_pretrained(
1289
+ model_configuration_links_object[model_configuration_name_value],
1290
+ **base_model_kwargs
1291
+ )
1292
+
1293
+ if use_model_cpu_offload_for_base_model == 1:
1294
+ pipe.enable_model_cpu_offload()
1295
+
1296
+ if use_xformers == 1:
1297
+ pipe.enable_xformers_memory_efficient_attention()
1298
+
1299
+ pipe = pipe.to(device)
1300
+
1301
+ if use_sequential_cpu_offload_for_base_model == 1:
1302
+ pipe.enable_sequential_cpu_offload()
1303
+
1304
+ if use_default_attn_processor == 1:
1305
+ pipe.unet.set_default_attn_processor()
1306
+
1307
+ if device == "cuda":
1308
+ torch.cuda.empty_cache()
1309
+ else:
1310
+ pipe.unet = torch.compile(
1311
+ pipe.unet,
1312
+ mode = "reduce-overhead",
1313
+ fullgraph = True
1314
+ )
1315
+
1316
+ last_model_configuration_name_value = model_configuration_name_value
1317
+
1318
+
1319
+
1320
+ if use_refiner == 1:
1321
+
1322
+ show_message("Loading refiner...")
1323
+
1324
+ refiner_kwargs = {
1325
+ "use_safetensors": True
1326
+ }
1327
+
1328
+ if device == "cuda":
1329
+
1330
+ refiner_kwargs["variant"] = "fp16"
1331
+ refiner_kwargs["torch_dtype"] = torch.float16
1332
+
1333
+ if use_custom_hugging_face_cache_dir == 1:
1334
+
1335
+ refiner_kwargs["cache_dir"] = hugging_face_cache_dir
1336
+
1337
+ refiner = DiffusionPipeline.from_pretrained(
1338
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
1339
+ **refiner_kwargs
1340
+ )
1341
+
1342
+ if use_model_cpu_offload_for_refiner == 1:
1343
+
1344
+ refiner.enable_model_cpu_offload()
1345
+
1346
+ if use_xformers == 1:
1347
+
1348
+ refiner.enable_xformers_memory_efficient_attention()
1349
+
1350
+ refiner = refiner.to(device)
1351
+
1352
+ if use_sequential_cpu_offload_for_refiner == 1:
1353
+
1354
+ refiner.enable_sequential_cpu_offload()
1355
+
1356
+ if use_default_attn_processor == 1:
1357
+
1358
+ refiner.unet.set_default_attn_processor()
1359
+
1360
+ if device == "cuda":
1361
+ torch.cuda.empty_cache()
1362
+ else:
1363
+ refiner.unet = torch.compile(
1364
+ refiner.unet,
1365
+ mode = "reduce-overhead",
1366
+ fullgraph = True
1367
+ )
1368
+
1369
+
1370
+
1371
+ if use_upscaler == 1:
1372
+
1373
+ show_message("Loading upscaler...")
1374
+
1375
+ upscaler_kwargs = {
1376
+ "use_safetensors": True
1377
+ }
1378
+
1379
+ if device == "cuda":
1380
+
1381
+ upscaler_kwargs["variant"] = "fp16"
1382
+ upscaler_kwargs["torch_dtype"] = torch.float16
1383
+
1384
+ if use_custom_hugging_face_cache_dir == 1:
1385
+
1386
+ upscaler_kwargs["cache_dir"] = hugging_face_cache_dir
1387
+
1388
+ upscaler = DiffusionPipeline.from_pretrained(
1389
+ "stabilityai/sd-x2-latent-upscaler",
1390
+ **upscaler_kwargs
1391
+ )
1392
+
1393
+ if use_model_cpu_offload_for_upscaler == 1:
1394
+
1395
+ upscaler.enable_model_cpu_offload()
1396
+
1397
+ if use_xformers == 1:
1398
+
1399
+ upscaler.enable_xformers_memory_efficient_attention()
1400
+
1401
+ upscaler = upscaler.to(device)
1402
+
1403
+ if use_sequential_cpu_offload_for_upscaler == 1:
1404
+
1405
+ upscaler.enable_sequential_cpu_offload()
1406
+
1407
+ if use_default_attn_processor == 1:
1408
+
1409
+ upscaler.unet.set_default_attn_processor()
1410
+
1411
+ if device == "cuda":
1412
+ torch.cuda.empty_cache()
1413
+ else:
1414
+ upscaler.unet = torch.compile(
1415
+ upscaler.unet,
1416
+ mode = "reduce-overhead",
1417
+ fullgraph = True
1418
+ )
1419
+
1420
+
1421
+
1422
+ if log_generation_times == 1:
1423
+
1424
+ start_time = time.time()
1425
+
1426
+
1427
+
1428
+ # Only 77 tokens are allowed in the prompt. 2 are reserved, meaning it is
1429
+ # truncated to 75. This happens automatically, but we want to tell people
1430
+ # that
1431
+
1432
+ tokenizer = pipe.tokenizer
1433
+
1434
+ max_token_length_of_model = pipe.tokenizer.model_max_length - number_of_reserved_tokens
1435
+
1436
+ token_length_of_prompt_text = len(tokenizer.tokenize(prompt_text))
1437
+ token_length_of_negative_prompt_text = len(tokenizer.tokenize(negative_prompt_text))
1438
+
1439
+ prompt_text_not_used_substring = ""
1440
+
1441
+ message_about_prompt_truncation = ""
1442
+
1443
+ if token_length_of_prompt_text > max_token_length_of_model:
1444
+
1445
+ (
1446
+ prompt_text,
1447
+ prompt_text_not_used_substring
1448
+ ) = truncate_prompt(
1449
+ prompt_text
1450
+ )
1451
+
1452
+ message_about_prompt_truncation += "Your prompt has been truncated because it is too long. This part has been truncated:<br/><br/><span style=\"font-style: italic;\">" + prompt_text_not_used_substring + "</span>"
1453
+
1454
+ negative_prompt_text_not_used_substring = ""
1455
+
1456
+ if token_length_of_negative_prompt_text > max_token_length_of_model:
1457
+
1458
+ (
1459
+ negative_prompt_text,
1460
+ negative_prompt_text_not_used_substring
1461
+ ) = truncate_prompt(
1462
+ negative_prompt_text
1463
+ )
1464
+
1465
+ if len(message_about_prompt_truncation) > 0:
1466
+
1467
+ message_about_prompt_truncation += "<br/><br/>"
1468
+
1469
+ message_about_prompt_truncation += "Your negative prompt has been truncated because it is too long. This part has been truncated:<br/><br/><span style=\"font-style: italic;\">" + negative_prompt_text_not_used_substring + "</span>"
1470
+
1471
+ prompt_truncated_field_udpate = gr.HTML(
1472
+ value = "",
1473
+ visible = False
1474
+ )
1475
+
1476
+ if len(message_about_prompt_truncation) > 0:
1477
+
1478
+ prompt_truncated_field_udpate = gr.HTML(
1479
+ value = "<div style=\"padding: 10px; background: #fff;\"><span style=\"font-weight: bold;\">Note</span>: " + message_about_prompt_truncation + "</div>",
1480
+ visible = True
1481
+ )
1482
+
1483
+ show_message("Note: Part of your prompt has been truncated automatically because it was too long.")
1484
+
1485
+
1486
+
1487
+ actual_seed = int(actual_seed)
1488
+
1489
+ if actual_seed == 0:
1490
+
1491
+ import random
1492
+
1493
+ default_seed_maximum_for_random = default_seed_maximum
1494
+
1495
+ if default_seed_maximum_for_random > 9007199254740992:
1496
+
1497
+ # If above this number, seeds may not be able to be entered into slider properly.
1498
+
1499
+ default_seed_maximum_for_random = 9007199254740992
1500
+
1501
+ actual_seed = int(random.randrange(1, 10**len(str(default_seed_maximum))))
1502
+
1503
+ if seed_not_valid(actual_seed):
1504
+
1505
+ raise Exception("Seed is not valid.")
1506
+
1507
+ generator = torch.manual_seed(actual_seed)
1508
+
1509
+
1510
+
1511
+ if model_configuration_name_value.find("default") < 0:
1512
+
1513
+
1514
+
1515
+ #
1516
+ #
1517
+ #
1518
+ # Attempt To Match Online Configurations
1519
+ #
1520
+ #
1521
+ #
1522
+
1523
+
1524
+
1525
+ prompt = prompt_text
1526
+ negative_prompt = negative_prompt_text
1527
+ width = image_width
1528
+ height = image_height
1529
+ scale = guidance_scale
1530
+ steps = base_model_num_inference_steps
1531
+ refining = use_refiner
1532
+ if refining == 1:
1533
+ refining = "Yes"
1534
+ upscaling = use_upscaler
1535
+ if upscaling == 1:
1536
+ upscaling = "Yes"
1537
+
1538
+ prompt_2 = ""
1539
+ negative_prompt_2 = ""
1540
+
1541
+ high_noise_frac = refining_denoise_start_for_online_config_field_value
1542
+
1543
+ if (
1544
+ model_configuration_name_value == "sdxl_2023-11-12" or
1545
+ model_configuration_name_value == "sdxl_2023-09-05"
1546
+ ):
1547
+
1548
+ n_steps = refining_number_of_iterations_for_online_config_field_value
1549
+
1550
+ upscaling_num_inference_steps = 15
1551
+
1552
+ if model_configuration_name_value == "sdxl_2023-09-05":
1553
+
1554
+ upscaling_num_inference_steps = 5
1555
+
1556
+
1557
+
1558
+ show_message("Initial image creation has begun.");
1559
+ int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
1560
+ if upscaling == 'Yes':
1561
+ show_message("Refining has begun.");
1562
+ image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps, denoising_start=high_noise_frac).images[0]
1563
+ show_message("Upscaling has begun.");
1564
+
1565
+ # Changed
1566
+ #
1567
+ # num_inference_steps=15
1568
+ #
1569
+
1570
+ upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=upscaling_num_inference_steps, guidance_scale=0).images[0]
1571
+ # torch.cuda.empty_cache()
1572
+ if device == "cuda":
1573
+ torch.cuda.empty_cache()
1574
+
1575
+ # Changed
1576
+ #
1577
+ # return (image, upscaled)
1578
+ #
1579
+
1580
+ image_to_return = upscaled
1581
+
1582
+ else:
1583
+ show_message("Refining has begun.");
1584
+ image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps ,denoising_start=high_noise_frac).images[0]
1585
+ # torch.cuda.empty_cache()
1586
+ if device == "cuda":
1587
+ torch.cuda.empty_cache()
1588
+
1589
+ # Changed
1590
+ #
1591
+ # return (image, image)
1592
+ #
1593
+ image_to_return = image
1594
+
1595
+
1596
+
1597
+ elif (
1598
+ model_configuration_name_value == "photoreal_2023-11-12" or
1599
+ model_configuration_name_value == "photoreal_2023-09-01"
1600
+ ):
1601
+
1602
+ Prompt = prompt
1603
+ upscale = refining # Not a mistake. This is wrong in code.
1604
+
1605
+
1606
+
1607
+ if upscale == "Yes":
1608
+ show_message("Initial image creation has begun.");
1609
+ int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
1610
+ show_message("Refining has begun.");
1611
+ image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
1612
+ else:
1613
+ show_message("Image creation has begun.");
1614
+ image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
1615
+
1616
+
1617
+
1618
+ image_to_return = image
1619
+
1620
+ else:
1621
+
1622
+
1623
+
1624
+ #
1625
+ #
1626
+ #
1627
+ # My Configurations
1628
+ #
1629
+ #
1630
+ #
1631
+
1632
+
1633
+
1634
+ if use_refiner == 1:
1635
+
1636
+ if use_upscaler == 1:
1637
+
1638
+ show_message("Will create initial image, then refine and then upscale");
1639
+
1640
+ if show_messages_in_command_prompt == 1:
1641
+
1642
+ print ("Initial image steps...");
1643
+
1644
+ intitial_image = pipe(
1645
+ prompt = prompt_text,
1646
+ negative_prompt = negative_prompt_text,
1647
+ width = image_width,
1648
+ height = image_height,
1649
+ num_inference_steps = base_model_num_inference_steps,
1650
+ guidance_scale = guidance_scale,
1651
+ num_images_per_prompt = 1,
1652
+ generator = generator,
1653
+ #denoising_end = refining_denoise_start_for_default_config,
1654
+ output_type = which_output_type_before_refiner_and_upscaler
1655
+ ).images
1656
+
1657
+ if show_messages_in_command_prompt == 1:
1658
+
1659
+ print ("Refiner steps...");
1660
+
1661
+ refined_image = refiner(
1662
+ prompt = prompt_text,
1663
+ negative_prompt = negative_prompt_text,
1664
+ image = intitial_image,
1665
+ num_inference_steps = base_model_num_inference_steps,
1666
+ denoising_start = refining_denoise_start_for_default_config,
1667
+ output_type = "pil"
1668
+ ).images
1669
+
1670
+ if show_messages_in_command_prompt == 1:
1671
+
1672
+ print ("Upscaler steps...");
1673
+
1674
+ upscaled_image = upscaler(
1675
+ prompt = prompt_text,
1676
+ negative_prompt = negative_prompt_text,
1677
+ image = refined_image,
1678
+ num_inference_steps = upscaling_num_inference_steps,
1679
+ guidance_scale = 0
1680
+ ).images[0]
1681
+
1682
+ if device == "cuda":
1683
+ torch.cuda.empty_cache()
1684
+
1685
+ image_to_return = upscaled_image
1686
+
1687
+ else:
1688
+
1689
+ show_message("Will create initial image and then refine");
1690
+
1691
+ if show_messages_in_command_prompt == 1:
1692
+
1693
+ print ("Initial image steps...");
1694
+
1695
+ intitial_image = pipe(
1696
+ prompt = prompt_text,
1697
+ negative_prompt = negative_prompt_text,
1698
+ width = image_width,
1699
+ height = image_height,
1700
+
1701
+
1702
+
1703
+ num_inference_steps = base_model_num_inference_steps,
1704
+
1705
+
1706
+
1707
+ #testing
1708
+ # num_inference_steps = 100,
1709
+ # denoising_end = 0.75,
1710
+
1711
+
1712
+
1713
+ guidance_scale = guidance_scale,
1714
+ num_images_per_prompt = 1,
1715
+ generator = generator,
1716
+ output_type = which_output_type_before_refiner_and_upscaler
1717
+ ).images
1718
+
1719
+ if show_messages_in_command_prompt == 1:
1720
+
1721
+ print ("Refiner steps...");
1722
+
1723
+ refined_image = refiner(
1724
+ prompt = prompt_text,
1725
+ negative_prompt = negative_prompt_text,
1726
+ image = intitial_image,
1727
+
1728
+
1729
+
1730
+ #testing
1731
+ # num_inference_steps = base_model_num_inference_steps,
1732
+ # denoising_start = refining_denoise_start_for_default_config
1733
+
1734
+
1735
+
1736
+ num_inference_steps = 60,
1737
+ denoising_start = 0.25
1738
+
1739
+
1740
+
1741
+ ).images[0]
1742
+
1743
+ if device == "cuda":
1744
+ torch.cuda.empty_cache()
1745
+
1746
+ image_to_return = refined_image
1747
+
1748
+ else:
1749
+
1750
+ if use_upscaler == 1:
1751
+
1752
+ show_message("Will create initial image and then upscale");
1753
+
1754
+ if show_messages_in_command_prompt == 1:
1755
+
1756
+ print ("Initial image steps...");
1757
+
1758
+ intitial_image = pipe(
1759
+ prompt = prompt_text,
1760
+ negative_prompt = negative_prompt_text,
1761
+ width = image_width,
1762
+ height = image_height,
1763
+ num_inference_steps = base_model_num_inference_steps,
1764
+ guidance_scale = guidance_scale,
1765
+ num_images_per_prompt = 1,
1766
+ generator = generator,
1767
+ # output_type = which_output_type_before_refiner_and_upscaler
1768
+ output_type = "pil"
1769
+ ).images
1770
+
1771
+ if show_messages_in_command_prompt == 1:
1772
+
1773
+ print ("Upscaler steps...");
1774
+
1775
+ upscaled_image = upscaler(
1776
+ prompt = prompt_text,
1777
+ negative_prompt = negative_prompt_text,
1778
+ image = intitial_image,
1779
+ num_inference_steps = upscaling_num_inference_steps,
1780
+ guidance_scale = 0
1781
+ ).images[0]
1782
+
1783
+ if device == "cuda":
1784
+ torch.cuda.empty_cache()
1785
+
1786
+ image_to_return = upscaled_image
1787
+
1788
+ else:
1789
+
1790
+ show_message("Will create image (no refining or upscaling)");
1791
+
1792
+ if show_messages_in_command_prompt == 1:
1793
+
1794
+ print ("Image steps...");
1795
+
1796
+ image = pipe(
1797
+ prompt = prompt_text,
1798
+ negative_prompt = negative_prompt_text,
1799
+ width = image_width,
1800
+ height = image_height,
1801
+ num_inference_steps = base_model_num_inference_steps,
1802
+ guidance_scale = guidance_scale,
1803
+ num_images_per_prompt = 1,
1804
+ generator = generator
1805
+ ).images[0]
1806
+
1807
+ if device == "cuda":
1808
+ torch.cuda.empty_cache()
1809
+
1810
+ image_to_return = image
1811
+
1812
+
1813
+
1814
+ #
1815
+ #
1816
+ #
1817
+ # Prompt Information
1818
+ #
1819
+ #
1820
+ #
1821
+
1822
+ nice_model_name = base_model_names_object[base_model_name_value] + " (" + model_configuration_links_object[model_configuration_name_value] + ")"
1823
+
1824
+ info_about_prompt_lines_array = [
1825
+ "Prompt:\n" + prompt_text
1826
+ ]
1827
+
1828
+ if len(negative_prompt_text) > 0:
1829
+
1830
+ info_about_prompt_lines_array.extend([
1831
+ "Negative Prompt:\n" + negative_prompt_text
1832
+ ])
1833
+
1834
+ dimensions_title = "Dimensions"
1835
+
1836
+ if use_upscaler == 1:
1837
+
1838
+ dimensions_title = "Original Dimensions"
1839
+
1840
+ info_about_prompt_lines_array.extend([
1841
+ dimensions_title + ": " + str(image_width) + "x" + str(image_height) + " px"
1842
+ ])
1843
+
1844
+ if use_upscaler == 1:
1845
+
1846
+ upscaled_image_width = int(image_width * 2)
1847
+ upscaled_image_height = int(image_height * 2)
1848
+
1849
+ info_about_prompt_lines_array.extend([
1850
+ "Upscaled Dimensions: " + str(upscaled_image_width) + "x" + str(upscaled_image_height) + " px"
1851
+ ])
1852
+
1853
+ info_about_prompt_lines_array.extend([
1854
+ "Seed: " + str(actual_seed)
1855
+ ])
1856
+
1857
+ if int(guidance_scale) > 0:
1858
+
1859
+ info_about_prompt_lines_array.extend([
1860
+ "Guidance Scale: " + str(guidance_scale)
1861
+ ])
1862
+
1863
+ info_about_prompt_lines_array.extend([
1864
+ "Base Model Steps: " + str(base_model_num_inference_steps),
1865
+ "Model: " + nice_model_name
1866
+ ])
1867
+
1868
+ if use_refiner == 1:
1869
+
1870
+ # Default Configuration
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+ # not done yet
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+
1889
+
1890
+
1891
+ # Online Configuration
1892
+
1893
+ if refining_denoise_start_for_online_config_field_value != 0:
1894
+
1895
+ nice_refiner_denoise_start = str(refining_denoise_start_for_online_config_field_value * 100) + "%"
1896
+
1897
+ info_about_prompt_lines_array.extend([
1898
+ "Refiner?: Yes",
1899
+ "Refiner denoise start %: " + nice_refiner_denoise_start
1900
+ ])
1901
+
1902
+ if int(refining_number_of_iterations_for_online_config_field_value) != 0:
1903
+
1904
+ nice_refiner_number_of_iterations = str(refining_number_of_iterations_for_online_config_field_value)
1905
+
1906
+ info_about_prompt_lines_array.extend([
1907
+ "Refiner number of iterations: " + nice_refiner_number_of_iterations
1908
+ ])
1909
+
1910
+ if use_upscaler == 1:
1911
+
1912
+ info_about_prompt_lines_array.extend([
1913
+ "Upscaled (2x)? Yes",
1914
+ "Refiner Steps: " + str(upscaling_num_inference_steps)
1915
+ ])
1916
+
1917
+ if log_generation_times == 1:
1918
+
1919
+ end_time = time.time()
1920
+
1921
+ generation_time_in_seconds = (end_time - start_time)
1922
+
1923
+ (
1924
+ generation_partial_hours,
1925
+ generation_partial_minutes,
1926
+ generation_partial_seconds
1927
+ ) = convert_seconds(generation_time_in_seconds)
1928
+
1929
+ if generation_partial_hours > 0:
1930
+
1931
+ hours_text = "hr"
1932
+
1933
+ if generation_partial_hours > 1:
1934
+
1935
+ hours_text = "hrs"
1936
+
1937
+ nice_generation_time = str(int(generation_partial_hours)) + " " + hours_text + ". " + str(int(generation_partial_minutes)) + " min. " + str(round(generation_partial_seconds, 1)) + " sec."
1938
+
1939
+ elif generation_partial_minutes > 0:
1940
+
1941
+ nice_generation_time = str(int(generation_partial_minutes)) + " min. " + str(round(generation_partial_seconds, 1)) + " sec."
1942
+
1943
+ else:
1944
+
1945
+ nice_generation_time = str(round(generation_time_in_seconds, 2)) + " sec."
1946
+
1947
+ info_about_prompt_lines_array.extend([
1948
+ "Time: " + nice_generation_time
1949
+ ])
1950
+
1951
+
1952
+
1953
+ if len(prompt_text_not_used_substring) > 0:
1954
+
1955
+ info_about_prompt_lines_array.extend([
1956
+ "End of Prompt Truncated: " + prompt_text_not_used_substring
1957
+ ])
1958
+
1959
+ if len(negative_prompt_text_not_used_substring) > 0:
1960
+
1961
+ info_about_prompt_lines_array.extend([
1962
+ "End of Negative Prompt Truncated: " + negative_prompt_text_not_used_substring
1963
+ ])
1964
+
1965
+
1966
+
1967
+ if display_xformers_usage_in_prompt_info > 0:
1968
+
1969
+ nice_xformers_usage = "No"
1970
+
1971
+ if use_xformers == 1:
1972
+
1973
+ nice_xformers_usage = "Yes"
1974
+
1975
+ if include_transformers_version_in_prompt_info == 1:
1976
+
1977
+ import transformers
1978
+
1979
+ nice_xformers_usage += " (version " + str(transformers.__version__) + ")"
1980
+
1981
+ info_about_prompt_lines_array.extend([
1982
+ "xFormers Used?: " + nice_xformers_usage
1983
+ ])
1984
+
1985
+ if display_default_attn_processor_usage_in_prompt_info > 0:
1986
+
1987
+ nice_default_attn_processor_usage = "No"
1988
+
1989
+ if use_default_attn_processor == 1:
1990
+
1991
+ nice_default_attn_processor_usage = "Yes"
1992
+
1993
+ info_about_prompt_lines_array.extend([
1994
+ "Default AttnProcessor Used?: " + nice_default_attn_processor_usage
1995
+ ])
1996
+
1997
+
1998
+
1999
+ info_about_prompt = '\n'.join(info_about_prompt_lines_array)
2000
+
2001
+
2002
+
2003
+ if auto_save_imagery == 1:
2004
+
2005
+
2006
+
2007
+ if not os.path.exists(saved_images_dir):
2008
+ os.makedirs(saved_images_dir)
2009
+
2010
+ yy_mm_dd_date_stamp = datetime.today().strftime('%Y-%m-%d')
2011
+
2012
+ saved_images_date_dir = saved_images_dir + "/" + yy_mm_dd_date_stamp + "/"
2013
+
2014
+ if not os.path.exists(saved_images_date_dir):
2015
+ os.makedirs(saved_images_date_dir)
2016
+
2017
+ image_count = 1
2018
+
2019
+ file_name_without_extension = yy_mm_dd_date_stamp + "-" + ('%04d' % image_count)
2020
+
2021
+ saved_image_path_and_file = saved_images_date_dir + file_name_without_extension + ".png"
2022
+
2023
+ while os.path.exists(saved_image_path_and_file):
2024
+
2025
+ file_name_without_extension = yy_mm_dd_date_stamp + "-" + ('%04d' % image_count)
2026
+
2027
+ saved_image_path_and_file = saved_images_date_dir + file_name_without_extension + ".png"
2028
+
2029
+ image_count += 1
2030
+
2031
+ image_to_return_file = image_to_return.save(saved_image_path_and_file)
2032
+
2033
+ saved_text_file_path_and_file = saved_images_date_dir + file_name_without_extension + ".txt"
2034
+
2035
+ prompt_info_file_handle = open(saved_text_file_path_and_file, "w")
2036
+ prompt_info_file_handle.writelines(info_about_prompt)
2037
+ prompt_info_file_handle.close()
2038
+
2039
+
2040
+
2041
+ if use_image_gallery == 1:
2042
+
2043
+ image_gallery_array.insert(0, image_to_return)
2044
+ prompt_information_array.insert(0, info_about_prompt)
2045
+
2046
+ output_image_field_update = gr.Gallery(
2047
+ value = image_gallery_array,
2048
+ selected_index = 0
2049
+ )
2050
+
2051
+ else:
2052
+
2053
+ output_image_field_update = gr.Image(
2054
+ value = image_to_return
2055
+ )
2056
+
2057
+
2058
+
2059
+ if show_messages_in_command_prompt == 1:
2060
+
2061
+ print ("Image created.")
2062
+
2063
+
2064
+
2065
+ return {
2066
+ output_image_field: output_image_field_update,
2067
+ output_text_field: info_about_prompt,
2068
+ prompt_truncated_field: prompt_truncated_field_udpate
2069
+ }
2070
+
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+
2077
+ #####################
2078
+ #
2079
+ # Cancel Image Processing
2080
+ #
2081
+ # When running on Windows, this is an attempt at closing the command
2082
+ # prompt from the web interface. It's really not worth having this. You
2083
+ # can just close the prompt. I would like a nice way to cancel image
2084
+ # creation, but couldn't figure that out.
2085
+ #
2086
+ #####################
2087
+
2088
+ def cancel_image_processing():
2089
+
2090
+ # I simply don't know how to stop the image generation without closing
2091
+ # the command prompt. Doing that requires the code below twice for some
2092
+ # reason.
2093
+ #
2094
+ # Method:
2095
+ # https://stackoverflow.com/questions/67146623/how-to-close-the-command-prompt-from-python-script-directly
2096
+
2097
+ gr.Warning("The command prompt window has been closed. Any image generation in progress has been stopped. To generate any other images, you will need to launch the command prompt again.")
2098
+
2099
+ os.system('title kill_window')
2100
+
2101
+ os.system(f'taskkill /f /fi "WINDOWTITLE eq kill_window"')
2102
+ os.system(f'taskkill /f /fi "WINDOWTITLE eq kill_window"')
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+ #####################
2111
+ #
2112
+ # Base Model Field Update Function
2113
+ #
2114
+ # When the base model dropdown changes, this function is run.
2115
+ #
2116
+ #####################
2117
+
2118
+ def base_model_field_update_function(
2119
+ base_model_field_index
2120
+ ):
2121
+
2122
+ base_model_field_value = base_model_array[base_model_field_index]
2123
+
2124
+ if base_model_field_value in base_model_array:
2125
+
2126
+ if base_model_field_value in base_model_object_of_model_configuration_arrays:
2127
+
2128
+ model_configuration_choices_array_update = []
2129
+
2130
+ for this_model_configuration in base_model_object_of_model_configuration_arrays[base_model_field_value]:
2131
+
2132
+ model_configuration_choices_array_update.append(
2133
+ model_configuration_names_object[this_model_configuration]
2134
+ )
2135
+
2136
+ if base_model_field_value in base_model_model_configuration_defaults_object:
2137
+
2138
+ model_configuration_field_selected_value = stored_model_configuration_names_object[base_model_field_value]
2139
+
2140
+ model_configuration_field_update = gr.Dropdown(
2141
+ choices = model_configuration_choices_array_update,
2142
+ value = model_configuration_field_selected_value
2143
+ )
2144
+
2145
+ negative_prompt_field_visibility = True
2146
+ negative_prompt_for_sdxl_turbo_field_visibility = False
2147
+ base_model_num_inference_steps_field_visibility = True
2148
+ base_model_num_inference_steps_field_for_sdxl_turbo_visibility = False
2149
+ guidance_scale_field_visibility = True
2150
+ guidance_scale_for_sdxl_turbo_field_visibility = False
2151
+
2152
+ if base_model_field_value == "sdxl_turbo":
2153
+
2154
+ negative_prompt_field_visibility = False
2155
+ negative_prompt_for_sdxl_turbo_field_visibility = True
2156
+ base_model_num_inference_steps_field_visibility = False
2157
+ base_model_num_inference_steps_field_for_sdxl_turbo_visibility = True
2158
+ guidance_scale_field_visibility = False
2159
+ guidance_scale_for_sdxl_turbo_field_visibility = True
2160
+
2161
+ negative_prompt_field_update = gr.Textbox(
2162
+ visible = negative_prompt_field_visibility
2163
+ )
2164
+
2165
+ negative_prompt_for_sdxl_turbo_field_update = gr.HTML(
2166
+ visible = negative_prompt_for_sdxl_turbo_field_visibility
2167
+ )
2168
+
2169
+ base_model_num_inference_steps_field_update = gr.Slider(
2170
+ visible = base_model_num_inference_steps_field_visibility
2171
+ )
2172
+
2173
+ base_model_num_inference_steps_field_for_sdxl_turbo_update = gr.Slider(
2174
+ visible = base_model_num_inference_steps_field_for_sdxl_turbo_visibility
2175
+ )
2176
+
2177
+ guidance_scale_field_update = gr.Slider(
2178
+ visible = guidance_scale_field_visibility
2179
+ )
2180
+
2181
+ guidance_scale_for_sdxl_turbo_field_update = gr.HTML(
2182
+ visible = guidance_scale_for_sdxl_turbo_field_visibility
2183
+ )
2184
+
2185
+ return {
2186
+ model_configuration_field: model_configuration_field_update,
2187
+ negative_prompt_field: negative_prompt_field_update,
2188
+ negative_prompt_for_sdxl_turbo_field: negative_prompt_for_sdxl_turbo_field_update,
2189
+ base_model_num_inference_steps_field: base_model_num_inference_steps_field_update,
2190
+ base_model_num_inference_steps_field_for_sdxl_turbo_field: base_model_num_inference_steps_field_for_sdxl_turbo_update,
2191
+ guidance_scale_field: guidance_scale_field_update,
2192
+ guidance_scale_for_sdxl_turbo_field: guidance_scale_for_sdxl_turbo_field_update
2193
+
2194
+ }
2195
+
2196
+ error_function("Error")
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+ #####################
2205
+ #
2206
+ # Model Configuration Field Update Function
2207
+ #
2208
+ # When the model configuration dropdown changes, this function is run.
2209
+ #
2210
+ #####################
2211
+
2212
+ def model_configuration_field_update_function(
2213
+ base_model_field_index,
2214
+ model_configuration_field_index
2215
+ ):
2216
+
2217
+ base_model_field_value = base_model_array[base_model_field_index]
2218
+
2219
+ if base_model_field_value in base_model_object_of_model_configuration_arrays[base_model_field_value][model_configuration_field_index]:
2220
+
2221
+ model_configuration_name_value = base_model_object_of_model_configuration_arrays[base_model_field_value][model_configuration_field_index]
2222
+
2223
+
2224
+
2225
+ stored_model_configuration_names_object[base_model_field_value] = model_configuration_names_object[model_configuration_name_value]
2226
+
2227
+
2228
+
2229
+ is_config_state = 0
2230
+
2231
+ if model_configuration_name_value in default_model_configuration_object:
2232
+
2233
+ is_config_state = 1
2234
+
2235
+ negative_prompt_field_visibility = True
2236
+ negative_prompt_for_sdxl_turbo_field_visibility = False
2237
+ base_model_num_inference_steps_field_visibility = True
2238
+ base_model_num_inference_steps_field_for_sdxl_turbo_visibility = False
2239
+ guidance_scale_field_visibility = True
2240
+ guidance_scale_for_sdxl_turbo_field_visibility = False
2241
+
2242
+ if base_model_field_value == "sdxl_turbo":
2243
+
2244
+ negative_prompt_field_visibility = False
2245
+ negative_prompt_for_sdxl_turbo_field_visibility = True
2246
+ base_model_num_inference_steps_field_visibility = False
2247
+ base_model_num_inference_steps_field_for_sdxl_turbo_visibility = True
2248
+ guidance_scale_field_visibility = False
2249
+ guidance_scale_for_sdxl_turbo_field_visibility = True
2250
+
2251
+ negative_prompt_field_update = gr.Textbox(
2252
+ visible = negative_prompt_field_visibility
2253
+ )
2254
+
2255
+ negative_prompt_for_sdxl_turbo_field_update = gr.HTML(
2256
+ visible = negative_prompt_for_sdxl_turbo_field_visibility
2257
+ )
2258
+
2259
+ base_model_num_inference_steps_field_update = gr.Slider(
2260
+ visible = base_model_num_inference_steps_field_visibility
2261
+ )
2262
+
2263
+ base_model_num_inference_steps_field_for_sdxl_turbo_update = gr.Slider(
2264
+ visible = base_model_num_inference_steps_field_for_sdxl_turbo_visibility
2265
+ )
2266
+
2267
+ guidance_scale_field_update = gr.Slider(
2268
+ visible = guidance_scale_field_visibility
2269
+ )
2270
+
2271
+ guidance_scale_for_sdxl_turbo_field_update = gr.HTML(
2272
+ visible = guidance_scale_for_sdxl_turbo_field_visibility
2273
+ )
2274
+
2275
+
2276
+
2277
+ refiner_default_config_accordion_visibility = False
2278
+ refiner_online_config_accordion_visibility = True
2279
+
2280
+ if is_config_state == 1:
2281
+
2282
+ refiner_default_config_accordion_visibility = True
2283
+ refiner_online_config_accordion_visibility = False
2284
+
2285
+
2286
+
2287
+ refining_selection_automatically_selected_message_field_visibility = False
2288
+
2289
+ refining_selection_online_config_normal_field_visibility = True
2290
+ refining_selection_online_config_automatically_selected_field_visibility = False
2291
+
2292
+ if model_configuration_name_value in model_configuration_force_refiner_object:
2293
+
2294
+ refining_selection_automatically_selected_message_field_visibility = True
2295
+
2296
+ refining_selection_online_config_normal_field_visibility = False
2297
+ refining_selection_online_config_automatically_selected_field_visibility = True
2298
+
2299
+
2300
+
2301
+ refiner_default_config_accordion_update = gr.Accordion(
2302
+ visible = refiner_default_config_accordion_visibility
2303
+ )
2304
+
2305
+ refiner_online_config_accordion_update = gr.Accordion(
2306
+ visible = refiner_online_config_accordion_visibility
2307
+ )
2308
+
2309
+ refining_selection_automatically_selected_message_field_update = gr.Markdown(
2310
+ visible = refining_selection_automatically_selected_message_field_visibility
2311
+ )
2312
+
2313
+ refining_selection_online_config_normal_field_update = gr.Radio(
2314
+ visible = refining_selection_online_config_normal_field_visibility
2315
+ )
2316
+
2317
+ refining_selection_online_config_automatically_selected_field_update = gr.Radio(
2318
+ visible = refining_selection_online_config_automatically_selected_field_visibility
2319
+ )
2320
+
2321
+
2322
+
2323
+ return {
2324
+ negative_prompt_field: negative_prompt_field_update,
2325
+ negative_prompt_for_sdxl_turbo_field: negative_prompt_for_sdxl_turbo_field_update,
2326
+ base_model_num_inference_steps_field: base_model_num_inference_steps_field_update,
2327
+ base_model_num_inference_steps_field_for_sdxl_turbo_field: base_model_num_inference_steps_field_for_sdxl_turbo_update,
2328
+ guidance_scale_field: guidance_scale_field_update,
2329
+ guidance_scale_for_sdxl_turbo_field: guidance_scale_for_sdxl_turbo_field_update,
2330
+
2331
+ refiner_default_config_accordion: refiner_default_config_accordion_update,
2332
+ refiner_online_config_accordion: refiner_online_config_accordion_update,
2333
+ refining_selection_automatically_selected_message_field: refining_selection_automatically_selected_message_field_update,
2334
+ refining_selection_online_config_normal_field: refining_selection_online_config_normal_field_update,
2335
+ refining_selection_online_config_automatically_selected_field: refining_selection_online_config_automatically_selected_field_update
2336
+
2337
+ }
2338
+
2339
+ error_function("Error")
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+ #####################
2348
+ #
2349
+ # Update Refiner and Upscaler Status Function
2350
+ #
2351
+ # When the refiner or upscaler is turned on or off, a text message is
2352
+ # printed on the page. That needs to be updated.
2353
+ #
2354
+ #####################
2355
+
2356
+ def update_refiner_and_upscaler_status_function(
2357
+ base_model_field_index,
2358
+ model_configuration_field_index,
2359
+ refining_selection_default_config_field_value,
2360
+ refining_selection_online_config_normal_field_value,
2361
+ refining_selection_online_config_automatically_selected_field_value,
2362
+ upscaling_selection_field_value
2363
+ ):
2364
+
2365
+ base_model_field_value = base_model_array[base_model_field_index]
2366
+
2367
+ if base_model_field_value in base_model_object_of_model_configuration_arrays[base_model_field_value][model_configuration_field_index]:
2368
+
2369
+ model_configuration_name_value = base_model_object_of_model_configuration_arrays[base_model_field_value][model_configuration_field_index]
2370
+
2371
+ is_config_state = 0
2372
+
2373
+ if model_configuration_name_value in default_model_configuration_object:
2374
+
2375
+ is_config_state = 1
2376
+
2377
+ refining_selection_default_config_field_value = numerical_bool(refining_selection_default_config_field_value)
2378
+ refining_selection_online_config_normal_field_value = numerical_bool(refining_selection_online_config_normal_field_value)
2379
+ refining_selection_online_config_automatically_selected_field_value = numerical_bool(refining_selection_online_config_automatically_selected_field_value)
2380
+ upscaling_selection_field_value = numerical_bool(upscaling_selection_field_value)
2381
+
2382
+ refiner_and_upscaler_status_text = refiner_and_upscaler_status_opening_html
2383
+
2384
+ if (
2385
+ (
2386
+ (is_config_state == 1) and
2387
+ refining_selection_online_config_normal_field_value
2388
+ ) or (
2389
+ (is_config_state != 1) and
2390
+ refining_selection_online_config_automatically_selected_field_value
2391
+ )
2392
+ ):
2393
+
2394
+ refiner_and_upscaler_status_text += refiner_on_text
2395
+
2396
+ else:
2397
+
2398
+ refiner_and_upscaler_status_text += refiner_off_text
2399
+
2400
+ if upscaling_selection_field_value == 1:
2401
+
2402
+ refiner_and_upscaler_status_text += upscaler_on_text
2403
+
2404
+ else:
2405
+
2406
+ refiner_and_upscaler_status_text += upscaler_off_text
2407
+
2408
+ refiner_and_upscaler_status_text += refiner_and_upscaler_status_closing_html
2409
+
2410
+ refiner_and_upscaler_text_field_update = gr.HTML(
2411
+ value = refiner_and_upscaler_status_text
2412
+ )
2413
+
2414
+ return {
2415
+ refiner_and_upscaler_text_field: refiner_and_upscaler_text_field_update
2416
+ }
2417
+
2418
+ error_function("Error")
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+ ###############################################################################
2427
+ ###############################################################################
2428
+ #
2429
+ #
2430
+ #
2431
+ #
2432
+ #
2433
+ #
2434
+ # Create Web Display
2435
+ #
2436
+ #
2437
+ #
2438
+ #
2439
+ #
2440
+ #
2441
+ ###############################################################################
2442
+ ###############################################################################
2443
+
2444
+
2445
+
2446
+ # Hide border when yield is used:
2447
+ # https://github.com/gradio-app/gradio/issues/5479
2448
+ # .generating {border: none !important;}
2449
+
2450
+ with gr.Blocks(
2451
+ title = "AI Image Creation",
2452
+ css = "footer{display:none !important}",
2453
+ theme = gr.themes.Default(
2454
+ spacing_size = gr.themes.sizes.spacing_md,
2455
+ # spacing_size = gr.themes.sizes.spacing_sm,
2456
+ radius_size = gr.themes.sizes.radius_none
2457
+ )
2458
+ ) as sd_interface:
2459
+
2460
+ gr.Markdown(opening_html)
2461
+
2462
+ with gr.Row():
2463
+
2464
+ with gr.Column(scale = 1):
2465
+
2466
+ generate_image_btn = gr.Button(
2467
+ value = "Generate",
2468
+ variant = "primary"
2469
+ )
2470
+
2471
+ with gr.Group():
2472
+
2473
+ with gr.Row():
2474
+
2475
+ prompt_field = gr.Textbox(
2476
+ label = "Prompt (77 token limit):",
2477
+ value = default_prompt
2478
+ )
2479
+
2480
+ with gr.Row():
2481
+
2482
+ negative_prompt_field = gr.Textbox(
2483
+ label = "Negative Prompt (77 token limit):",
2484
+ value = default_negative_prompt,
2485
+ visible = default_negative_prompt_field_visibility
2486
+ )
2487
+
2488
+ with gr.Row():
2489
+
2490
+ negative_prompt_for_sdxl_turbo_field = gr.HTML(
2491
+ value = "<div style=\"padding: 10px; text-align: center; background: #fff;\">Negative prompt is not used for SDXL Turbo.</div>",
2492
+ visible = default_negative_prompt_for_sdxl_turbo_field_visibility
2493
+ )
2494
+
2495
+ with gr.Group(
2496
+ visible = refiner_group_visible
2497
+ ):
2498
+
2499
+ with gr.Accordion(
2500
+ label = "Refiner (Default Config)",
2501
+ elem_id = "refiner_default_config_accordion_id",
2502
+ open = refiner_default_config_accordion_open,
2503
+ visible = refiner_default_config_accordion_visible
2504
+ ) as refiner_default_config_accordion:
2505
+
2506
+ #
2507
+ #
2508
+ #
2509
+ # Refiner (Default Config)
2510
+ #
2511
+ #
2512
+ #
2513
+
2514
+ with gr.Row():
2515
+
2516
+ gr.Markdown("This can be used if the image has too much noise.")
2517
+
2518
+ with gr.Row():
2519
+
2520
+ refining_selection_default_config_field = gr.Radio(
2521
+ choices = ["Yes", "No"],
2522
+ value = default_refine_option,
2523
+ show_label = False,
2524
+ container = False
2525
+ )
2526
+
2527
+ with gr.Row():
2528
+
2529
+ refining_use_denoising_start_in_base_model_when_using_refiner_field = gr.Checkbox(
2530
+ label = "Use \"denoising_start\" value as \"denoising_end\" value in base model generation when using refiner (doesn't work yet)",
2531
+ value = default_use_denoising_start_in_base_model_when_using_refiner,
2532
+ # interactive = True,
2533
+ container = True
2534
+ )
2535
+
2536
+ with gr.Row():
2537
+
2538
+ refining_base_model_output_to_refiner_is_in_latent_space_field = gr.Checkbox(
2539
+ label = "Base model output in latent space instead of PIL image when using refiner (doesn't work yet)",
2540
+ value = default_base_model_output_to_refiner_is_in_latent_space,
2541
+ # interactive = True,
2542
+ container = True
2543
+ )
2544
+
2545
+ with gr.Row():
2546
+
2547
+ refining_denoise_start_for_default_config_field = gr.Slider(
2548
+ label = "Refiner denoise start %",
2549
+ minimum = 0.7,
2550
+ maximum = 0.99,
2551
+ value = 0.95,
2552
+ step = 0.01
2553
+ )
2554
+
2555
+ # with gr.Row():
2556
+
2557
+ # refining_number_of_iterations_for_default_config_field = gr.Slider(
2558
+ # label = "Refiner number of iterations",
2559
+ # minimum = 1,
2560
+ # maximum = 100,
2561
+ # value = 100,
2562
+ # step = 1
2563
+ # )
2564
+
2565
+ with gr.Accordion(
2566
+ label = "Refiner (Online Config)",
2567
+ elem_id = "refiner_online_config_accordion_id",
2568
+ open = refiner_online_config_accordion_open,
2569
+ visible = refiner_online_config_accordion_visible
2570
+ ) as refiner_online_config_accordion:
2571
+
2572
+ #
2573
+ #
2574
+ #
2575
+ # Refiner (Online Config)
2576
+ #
2577
+ #
2578
+ #
2579
+
2580
+ refining_selection_automatically_selected_message_field_visible = False
2581
+
2582
+ refining_selection_online_config_normal_field_visible = True
2583
+ refining_selection_online_config_automatically_selected_field_visible = False
2584
+
2585
+ if model_configuration_requires_refiner == 1:
2586
+
2587
+ refining_selection_automatically_selected_message_field_visible = True
2588
+
2589
+ refining_selection_online_config_normal_field_visible = False
2590
+ refining_selection_online_config_automatically_selected_field_visible = True
2591
+
2592
+ with gr.Row():
2593
+
2594
+ refining_selection_automatically_selected_message_field = gr.Markdown(
2595
+ value = "The online configuration you selected automatically uses the refiner.",
2596
+ visible = refining_selection_automatically_selected_message_field_visible
2597
+ )
2598
+
2599
+ with gr.Row():
2600
+
2601
+ refining_selection_online_config_normal_field = gr.Radio(
2602
+ choices = ["Yes", "No"],
2603
+ value = default_refine_option,
2604
+ show_label = False,
2605
+ container = False,
2606
+ visible = refining_selection_online_config_normal_field_visible
2607
+ )
2608
+
2609
+ with gr.Row():
2610
+
2611
+ refining_selection_online_config_automatically_selected_field = gr.Radio(
2612
+ choices = ["Yes"],
2613
+ value = "Yes",
2614
+ show_label = False,
2615
+ container = False,
2616
+ visible = refining_selection_online_config_automatically_selected_field_visible
2617
+ )
2618
+
2619
+ with gr.Row():
2620
+
2621
+ refining_denoise_start_for_online_config_field = gr.Slider(
2622
+ label = "Refiner denoise start %",
2623
+ minimum = 0.7,
2624
+ maximum = 0.99,
2625
+ value = 0.95,
2626
+ step = 0.01
2627
+ )
2628
+
2629
+ with gr.Row():
2630
+
2631
+ refining_number_of_iterations_for_online_config_field = gr.Slider(
2632
+ label = "Refiner number of iterations",
2633
+ minimum = 1,
2634
+ maximum = 100,
2635
+ value = 100,
2636
+ step = 1
2637
+ )
2638
+
2639
+ with gr.Group(
2640
+ visible = upscaler_group_visible
2641
+ ):
2642
+
2643
+ with gr.Accordion(
2644
+ label = "Upscaler",
2645
+ elem_id = "upscaler_accordion_id",
2646
+ open = upscaler_accordion_open,
2647
+ visible = upscaler_group_visible
2648
+ ):
2649
+
2650
+ #
2651
+ #
2652
+ #
2653
+ # Upscaler
2654
+ #
2655
+ #
2656
+ #
2657
+
2658
+ with gr.Row():
2659
+
2660
+ gr.Markdown("Upscale by 2x?")
2661
+
2662
+ with gr.Row():
2663
+
2664
+ upscaling_selection_field = gr.Radio(
2665
+ choices = ['Yes', 'No'],
2666
+ value = default_upscale_option,
2667
+ show_label = False,
2668
+ container = False
2669
+ )
2670
+
2671
+ with gr.Row():
2672
+
2673
+ upscaling_num_inference_steps_field = gr.Slider(
2674
+ label = "Upscaler number of iterations",
2675
+ minimum = 1,
2676
+ maximum = 100,
2677
+ value = 100,
2678
+ step = 1
2679
+ )
2680
+
2681
+ if (
2682
+ (enable_refiner == 1) or
2683
+ (enable_upscaler == 1)
2684
+ ):
2685
+
2686
+ refiner_and_upscaler_text_field = gr.HTML(
2687
+ value = default_refiner_and_upscaler_status_text
2688
+ )
2689
+
2690
+ with gr.Column(scale = 1):
2691
+
2692
+ with gr.Group():
2693
+
2694
+ with gr.Row():
2695
+
2696
+ base_model_field = gr.Dropdown(
2697
+ label = "Base Model:",
2698
+ choices = default_base_model_choices_array,
2699
+ value = default_base_model_nicely_named_value,
2700
+ type = "index",
2701
+ #info = "Main model type",
2702
+ filterable = False,
2703
+ min_width = 240,
2704
+ interactive = True
2705
+ )
2706
+
2707
+ model_configuration_field = gr.Dropdown(
2708
+ label = "Configuration Type:",
2709
+ choices = default_model_configuration_choices_array,
2710
+ value = default_model_configuration_nicely_named_value,
2711
+ type = "index",
2712
+ #info = "See end of page for info.",
2713
+ filterable = False,
2714
+ min_width = 240,
2715
+ interactive = True
2716
+ )
2717
+
2718
+ with gr.Row():
2719
+
2720
+ image_width_field = gr.Slider(
2721
+ label = "Width:",
2722
+ minimum = 256,
2723
+ maximum = 1024,
2724
+ value = default_width,
2725
+ step = width_and_height_input_slider_steps,
2726
+ interactive = True
2727
+ )
2728
+
2729
+ image_height_field = gr.Slider(
2730
+ label = "Height:",
2731
+ minimum = 256,
2732
+ maximum = 1024,
2733
+ value = default_height,
2734
+ step = width_and_height_input_slider_steps,
2735
+ interactive = True
2736
+ )
2737
+
2738
+ with gr.Row():
2739
+
2740
+ base_model_num_inference_steps_field = gr.Slider(
2741
+ label = "Steps:",
2742
+ minimum = 1,
2743
+ maximum = 100,
2744
+ value = default_base_model_base_model_num_inference_steps,
2745
+ step = 1,
2746
+ visible = default_base_model_num_inference_steps_field_visibility,
2747
+ interactive = True
2748
+ )
2749
+
2750
+ with gr.Row():
2751
+
2752
+ base_model_num_inference_steps_field_for_sdxl_turbo_field = gr.Slider(
2753
+ label = "Steps:",
2754
+ info = "Try using only 1 or a couple of steps.",
2755
+ minimum = 1,
2756
+ maximum = 25,
2757
+ value = default_base_model_base_model_num_inference_steps_for_sdxl_turbo,
2758
+ step = 1,
2759
+ visible = default_base_model_num_inference_steps_field_for_sdxl_turbo_field_visibility,
2760
+ interactive = True
2761
+ )
2762
+
2763
+ with gr.Row():
2764
+
2765
+ guidance_scale_field = gr.Slider(
2766
+ label = "Guidance Scale:",
2767
+ minimum = 1,
2768
+ maximum = 15,
2769
+ value = default_guidance_scale_value,
2770
+ step = 0.25,
2771
+ visible = default_guidance_scale_field_visibility,
2772
+ interactive = True
2773
+ )
2774
+
2775
+ with gr.Row():
2776
+
2777
+ guidance_scale_for_sdxl_turbo_field = gr.HTML(
2778
+ value = "<div style=\"padding: 10px; text-align: center; background: #fff;\">Guidance scale is not used for SDXL Turbo.</div>",
2779
+ visible = default_guidance_scale_for_sdxl_turbo_field_visibility
2780
+ )
2781
+
2782
+ with gr.Row():
2783
+
2784
+ seed_selection_option = gr.Slider(
2785
+ label = "Seed (0 is random):",
2786
+ minimum = 0,
2787
+ maximum = default_seed_maximum,
2788
+ value = default_seed_value,
2789
+ step = 1,
2790
+ interactive = True
2791
+ )
2792
+
2793
+ if make_seed_selection_a_textbox == 1:
2794
+
2795
+ seed_selection_option = gr.Textbox(
2796
+ label = "Seed (0 is random; " + str(default_seed_maximum) + " max):",
2797
+ value = "0",
2798
+ interactive = True
2799
+ )
2800
+
2801
+ seed_field = seed_selection_option
2802
+
2803
+
2804
+
2805
+ with gr.Column(scale = 1):
2806
+
2807
+ # with gr.Row():
2808
+
2809
+ # generate_image_btn = gr.Button(
2810
+ # value = "Generate",
2811
+ # variant = "primary"
2812
+ # )
2813
+
2814
+ with gr.Row():
2815
+
2816
+ if use_image_gallery == 1:
2817
+
2818
+ output_image_field = gr.Gallery(
2819
+ label = "Generated Images",
2820
+ value = [],
2821
+ # columns = 1,
2822
+ # rows = 1,
2823
+ selected_index = 0,
2824
+ elem_id = "image_gallery",
2825
+ allow_preview = "True",
2826
+ preview = True
2827
+ )
2828
+
2829
+ else:
2830
+
2831
+ output_image_field = gr.Image(
2832
+ label = "Generated Image",
2833
+ type = "pil"
2834
+ )
2835
+
2836
+ with gr.Row():
2837
+
2838
+ output_text_field = gr.Text(
2839
+ label = "Prompt Information:",
2840
+ value = "After an image is generated, its generation information will appear here." + additional_prompt_info_html,
2841
+ show_copy_button = True,
2842
+ lines = 4
2843
+ )
2844
+
2845
+ with gr.Row():
2846
+
2847
+ prompt_truncated_field = gr.HTML(
2848
+ value = "",
2849
+ visible = False
2850
+ )
2851
+
2852
+ global cancel_image_btn
2853
+
2854
+ if enable_close_command_prompt_button == 1:
2855
+
2856
+ cancel_image_btn = gr.Button(
2857
+ value = "Close Command Prompt / Cancel",
2858
+ variant = "stop"
2859
+ )
2860
+
2861
+ gr.Markdown("Closing the command prompt will cancel any images in the process of being created. You will need to launch it again to create more images.")
2862
+
2863
+ if len(ending_html) > 0:
2864
+
2865
+ with gr.Accordion(
2866
+ label = "Information",
2867
+ elem_id = "information_section_id",
2868
+ open = True
2869
+ ):
2870
+
2871
+ gr.Markdown(ending_html)
2872
+
2873
+ base_model_field.change(
2874
+ fn = base_model_field_update_function,
2875
+ inputs = [
2876
+ base_model_field
2877
+ ],
2878
+ outputs = [
2879
+ model_configuration_field,
2880
+ negative_prompt_field,
2881
+ negative_prompt_for_sdxl_turbo_field,
2882
+ base_model_num_inference_steps_field,
2883
+ base_model_num_inference_steps_field_for_sdxl_turbo_field,
2884
+ guidance_scale_field,
2885
+ guidance_scale_for_sdxl_turbo_field
2886
+ ],
2887
+ queue = None,
2888
+ show_progress = "hidden"
2889
+ )
2890
+
2891
+ model_configuration_field.change(
2892
+ fn = model_configuration_field_update_function,
2893
+ inputs = [
2894
+ base_model_field,
2895
+ model_configuration_field
2896
+ ],
2897
+ outputs = [
2898
+ negative_prompt_field,
2899
+ negative_prompt_for_sdxl_turbo_field,
2900
+ base_model_num_inference_steps_field,
2901
+ base_model_num_inference_steps_field_for_sdxl_turbo_field,
2902
+ guidance_scale_field,
2903
+ guidance_scale_for_sdxl_turbo_field,
2904
+ refiner_default_config_accordion,
2905
+ refiner_online_config_accordion,
2906
+ refining_selection_automatically_selected_message_field,
2907
+ refining_selection_online_config_normal_field,
2908
+ refining_selection_online_config_automatically_selected_field
2909
+ ],
2910
+ queue = None,
2911
+ show_progress = "hidden"
2912
+ )
2913
+
2914
+ if use_image_gallery == 1:
2915
+
2916
+ output_image_field.select(
2917
+ fn = update_prompt_info_from_gallery,
2918
+ inputs = None,
2919
+ outputs = [
2920
+ output_image_field,
2921
+ output_text_field
2922
+ ]
2923
+ )
2924
+
2925
+ if (
2926
+ (enable_refiner == 1) or
2927
+ (enable_upscaler == 1)
2928
+ ):
2929
+
2930
+ triggers_array = []
2931
+
2932
+ if enable_refiner == 1:
2933
+
2934
+ triggers_array.extend([
2935
+ refining_selection_default_config_field.change,
2936
+ refining_selection_online_config_normal_field.change,
2937
+ refining_selection_online_config_automatically_selected_field.change
2938
+ ])
2939
+
2940
+ if enable_upscaler == 1:
2941
+
2942
+ triggers_array.extend([
2943
+ upscaling_selection_field.change
2944
+ ])
2945
+
2946
+ gr.on(
2947
+ triggers = triggers_array,
2948
+ fn = update_refiner_and_upscaler_status_function,
2949
+ inputs = [
2950
+ base_model_field,
2951
+ model_configuration_field,
2952
+ refining_selection_default_config_field,
2953
+ refining_selection_online_config_normal_field,
2954
+ refining_selection_online_config_automatically_selected_field,
2955
+ upscaling_selection_field
2956
+ ],
2957
+ outputs = [
2958
+ refiner_and_upscaler_text_field
2959
+ ],
2960
+ queue = None,
2961
+ show_progress = "hidden"
2962
+ )
2963
+
2964
+ generate_image_btn_click_event = generate_image_btn.click(
2965
+ fn = create_image_function,
2966
+ inputs = [
2967
+ base_model_field,
2968
+ model_configuration_field,
2969
+ prompt_field,
2970
+ negative_prompt_field,
2971
+ image_width_field,
2972
+ image_height_field,
2973
+ guidance_scale_field,
2974
+ base_model_num_inference_steps_field,
2975
+ base_model_num_inference_steps_field_for_sdxl_turbo_field,
2976
+ seed_field,
2977
+
2978
+ refining_selection_online_config_normal_field,
2979
+ refining_selection_online_config_automatically_selected_field,
2980
+
2981
+ refining_use_denoising_start_in_base_model_when_using_refiner_field,
2982
+ refining_base_model_output_to_refiner_is_in_latent_space_field,
2983
+
2984
+ refining_denoise_start_for_online_config_field,
2985
+ refining_number_of_iterations_for_online_config_field,
2986
+
2987
+ upscaling_selection_field,
2988
+ upscaling_num_inference_steps_field
2989
+ ],
2990
+ outputs = [
2991
+ output_image_field,
2992
+ output_text_field,
2993
+ prompt_truncated_field
2994
+ ]
2995
+ )
2996
+
2997
+ if enable_close_command_prompt_button == 1:
2998
+
2999
+ # https://github.com/gradio-app/gradio/pull/2433/files
3000
+
3001
+ cancel_image_btn.click(
3002
+ fn = cancel_image_processing,
3003
+ inputs = None,
3004
+ outputs = None,
3005
+ cancels = [generate_image_btn_click_event]
3006
+ )
3007
+
3008
+
3009
+
3010
+ sd_interface.queue(
3011
+ # concurrency_limit = 1,
3012
+ max_size = 20
3013
+ )
3014
+
3015
+ inbrowser = False
3016
+
3017
+ if auto_open_browser == 1:
3018
+
3019
+ inbrowser = True
3020
+
3021
+ sd_interface.launch(
3022
+ inbrowser = inbrowser,
3023
+ # debug = True,
3024
+ share = None,
3025
+ show_api = False,
3026
+ quiet = True,
3027
+ show_error = True,
3028
+ max_threads = 1
3029
+ )
3030
+
3031
+ sd_interface.load(
3032
+ scroll_to_output = False,
3033
+ show_progress = "full"
3034
+ )