File size: 5,011 Bytes
faad496
 
 
 
 
2ba6acd
faad496
 
 
135bc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6757ba7
135bc84
66a377e
135bc84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6757ba7
135bc84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import nltk
import sklearn_crfsuite
from sklearn_crfsuite import metrics
import gradio as gr
import re

nltk.download('brown')
nltk.download('universal_tagset')
corpus = nltk.corpus.brown.tagged_sents(tagset='universal')

sentence = [
    ('The', 'DET'),
    ('dog', 'NOUN'),
    ('jumps', 'VERB'),
    ('over', 'ADP'),
    ('the', 'DET'),
    ('car', 'NOUN')
]
corpus = list(corpus)
corpus[21058] = sentence

def word_features(sentence, i, prev_tag):
    word = sentence[i][0]
    features = {
        'word': word,
        'is_first': i == 0, #if the word is a first word
        'is_last': i == len(sentence) - 1,  #if the word is a last word
        'is_capitalized': word[0].upper() == word[0],
        'is_all_caps': word.upper() == word,      #word is in uppercase
        'is_all_lower': word.lower() == word,      #word is in lowercase
        'prefix-1': word[0],
        'prefix-2': word[:2],
        'prefix-3': word[:3],
        'prefix-un': word[:2] == 'un',   #if word starts with un
        'prefix-re': word[:2] == 're',   #if word starts with re
        'prefix-over': word[:4] == 'over',  #if word starts with over
        'prefix-dis': word[:4] == 'dis',   #if word starts with dis
        'prefix-mis': word[:4] == 'mis',   #if word starts with mis
        'prefix-pre': word[:4] == 'pre',   #if word starts with pre
        'prefix-non': word[:4] == 'non',   #if word starts with non
        'prefix-de': word[:3] == 'de',     #if word starts with de
        'prefix-in': word[:3] == 'in',     #if word starts with in
        'prefix-en': word[:3] == 'en',     #if word starts with en
        'suffix-1': word[-1],
        'suffix-2': word[-2:],
        'suffix-3': word[-3:],
        'suffix-ed': word[-2:] == 'ed',   #if word ends with ed
        'suffix-ing': word[-3:] == 'ing',  #if word ends with ing
        'suffix-es': word[-2:] == 'es',    #if word ends with es
        'suffix-s': word[-1] == 's',       #if word ends with s
        'suffix-ly': word[-2:] == 'ly',    #if word ends with ly
        'suffix-ment': word[-4:] == 'ment',  #if word ends with ment
        'suffix-er': word[-2:] == 'er',     #if word ends with er
        'prev_word': '' if i == 0 else sentence[i-1][0],
        'next_word': '' if i == len(sentence)-1 else sentence[i+1][0],  
        'has_hyphen': '-' in word,    #if word has hypen
        'is_numeric': word.isdigit(),  #if word is in numeric
        'capitals_inside': word[1:].lower() != word[1:],
        'is_first_capital': word[0].upper() == word[0],  #if first letter is in uppercase
        'suffix-s_and-prev_tag_noun': word[-1] == 's' and prev_tag == 'NOUN',  #if word ends with s and previous tag is NOUN
        'prev_tag': prev_tag,
    }
    return features

X = []
y = []
for sentence in corpus:
    X_sentence = []
    y_sentence = []
    for i in range(len(sentence)):
        X_sentence.append(word_features(sentence, i, '' if i == 0 else sentence[i-1][1]))
        y_sentence.append(sentence[i][1])
    X.append(X_sentence)
    y.append(y_sentence)
 
 
# Split the data into training and testing sets
split = int(0.8 * len(X))
X_train = X[:split]
y_train = y[:split]
X_test = X[split:]
y_test = y[split:]

# Train a CRF model on the training data
crf = sklearn_crfsuite.CRF(
    algorithm='lbfgs',
    c1=0.1,
    c2=0.1,
    max_iterations=100,
    all_possible_transitions=True
)
crf.fit(X_train, y_train)
 
# Make predictions on the test data and evaluate the performance
y_pred = crf.predict(X_test)
 
print(metrics.flat_accuracy_score(y_test, y_pred))

def predict_tags(sentence):
    tokens = sentence.split()
    tokens2 = [(token, '') for token in tokens]
    features = []
    prev_prev_tag = ''
    prev_tag = ''
    for i in range(len(tokens)):
        features.append(word_features(tokens2, i, prev_tag))
        if i > 0:
            prev_tag = crf.predict([features[:i]])[0][i-1]

    predicted_tags = crf.predict([features])[0]
    return list(zip(tokens, predicted_tags))
    

# Example usage
new_sentence = "The dog walks over the car"
predicted_tags = predict_tags(new_sentence)
print(predicted_tags)

def tagging(input):
    input = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input.strip()))
    tagged_list = predict_tags(input)
    output = ''.join(f"{word}[{tag}]   " for word, tag in tagged_list)
    return output


interface = gr.Interface(fn = tagging,
                         inputs = gr.Textbox(
                             label="Input Sentence",
                             placeholder="Enter your sentence here...",
                         ),
                         outputs = gr.Textbox(
                             label="Tagged Output",
                             placeholder="Tagged sentence appears here...",
                         ),
                         title = "Conditional Random Field POS Tagger",
                         description = "CS626 Assignment 1B (Autumn 2024)",
                         theme=gr.themes.Soft())
interface.launch(inline = False)