Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import time | |
import torch | |
import os | |
import json | |
from tqdm import tqdm | |
import shortuuid | |
from tinychart.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from tinychart.conversation import conv_templates, SeparatorStyle | |
from tinychart.model.builder import load_pretrained_model | |
from tinychart.utils import disable_torch_init | |
from tinychart.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path, KeywordsStoppingCriteria | |
from torch.utils.data import Dataset, DataLoader | |
from PIL import Image | |
import math | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
class EvalDataset(Dataset): | |
def __init__(self, data_items, image_folder, tokenizer, image_processor, model_config): | |
self.data_items = data_items | |
self.image_folder = image_folder | |
self.tokenizer = tokenizer | |
self.image_processor = image_processor | |
self.model_config = model_config | |
def __getitem__(self, index): | |
line = self.data_items[index] | |
image_file = line["image"] | |
qs = line["conversations"][0]["value"] | |
# if self.model_config.mm_use_im_start_end: | |
# qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
# else: | |
# qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB') | |
image_tensor = process_images([image], self.image_processor, self.model_config)[0] | |
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') | |
return input_ids, image_tensor, image.size | |
def __len__(self): | |
return len(self.data_items) | |
def collate_fn(batch): | |
input_ids, image_tensors, image_sizes = zip(*batch) | |
input_ids = torch.stack(input_ids, dim=0) | |
image_tensors = torch.stack(image_tensors, dim=0) | |
return input_ids, image_tensors, image_sizes | |
# DataLoader | |
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4): | |
assert batch_size == 1, "batch_size must be 1" | |
dataset = EvalDataset(questions, image_folder, tokenizer, image_processor, model_config) | |
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn) | |
return data_loader | |
def eval_model(args): | |
disable_torch_init() | |
model_path = os.path.expanduser(args.model_path) | |
model_name = get_model_name_from_path(model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) | |
all_data = json.load(open(args.data_path, "r")) | |
all_data = get_chunk(all_data, args.num_chunks, args.chunk_idx) | |
answers_file = os.path.expanduser(args.output_path) | |
os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
ans_file = open(answers_file, "w") | |
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode: | |
args.conv_mode = args.conv_mode + '_mmtag' | |
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.') | |
data_loader = create_data_loader(all_data, args.image_folder, tokenizer, image_processor, model.config) | |
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, all_data), total=len(all_data)): | |
idx = line["id"] | |
cur_prompt = line["conversations"][0]["value"] | |
input_ids = input_ids.to(device='cuda', non_blocking=True) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), | |
pad_token_id=tokenizer.pad_token_id, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
top_p=args.top_p, | |
num_beams=args.num_beams, | |
max_new_tokens=args.max_new_tokens, | |
min_new_tokens=args.min_new_tokens, | |
use_cache=True) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
ans_id = shortuuid.uuid() | |
ans_file.write(json.dumps({"id": idx, | |
"question": cur_prompt, | |
"gt_answer": line["conversations"][1]["value"], | |
"model_answer": outputs}) + "\n") | |
ans_file.flush() | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--model_base", type=str, default=None) | |
parser.add_argument("--image_folder", type=str, default="") | |
parser.add_argument("--data_path", type=str, default="./data/test_chartqa+cot_shuffle.json") | |
parser.add_argument("--output_path", type=str, default="./output/") | |
parser.add_argument("--conv_mode", type=str, default="phi") | |
parser.add_argument("--num_chunks", type=int, default=1) | |
parser.add_argument("--chunk_idx", type=int, default=0) | |
parser.add_argument("--temperature", type=float, default=0.0) | |
parser.add_argument("--top_p", type=float, default=None) | |
parser.add_argument("--num_beams", type=int, default=1) | |
parser.add_argument("--max_new_tokens", type=int, default=1024) | |
parser.add_argument("--min_new_tokens", type=int, default=0) | |
args = parser.parse_args() | |
eval_model(args) | |