Spaces:
Running
on
Zero
Running
on
Zero
''' | |
# Adapted from https://huggingface.co/MILVLG/imp-v1-3b/blob/main/vision_encoder.py | |
''' | |
from typing import Optional, Tuple, Union, Dict | |
from dataclasses import dataclass | |
from functools import partial, reduce | |
from PIL import Image | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
import torch.nn.functional as F | |
import os | |
import numpy as np | |
from transformers.image_processing_utils import BatchFeature, get_size_dict | |
from transformers.image_transforms import (convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format, ) | |
from transformers.image_utils import (ChannelDimension, PILImageResampling, to_numpy_array, ) | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers import PretrainedConfig | |
from transformers.utils import ModelOutput | |
from tinychart.model.multimodal_encoder.merge import bipartite_soft_matching, merge_source, merge_wavg | |
class SigLipImageProcessor: | |
def __init__(self, | |
image_mean=(0.5, 0.5, 0.5), | |
image_std=(0.5, 0.5, 0.5), | |
size=(384, 384), | |
crop_size: Dict[str, int] = None, | |
resample=PILImageResampling.BICUBIC, | |
rescale_factor=1 / 255, | |
data_format=ChannelDimension.FIRST): | |
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384} | |
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") | |
self.image_mean = image_mean | |
self.image_std = image_std | |
self.size = size | |
self.resample = resample | |
self.rescale_factor = rescale_factor | |
self.data_format = data_format | |
self.crop_size = crop_size | |
def preprocess(self, images, return_tensors): | |
if isinstance(images, Image.Image): | |
images = [images] | |
else: | |
assert isinstance(images, list) | |
transforms = [ | |
convert_to_rgb, | |
to_numpy_array, | |
partial(resize, size=self.size, resample=self.resample, data_format=self.data_format), | |
partial(rescale, scale=self.rescale_factor, data_format=self.data_format), | |
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format), | |
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format), | |
] | |
images = reduce(lambda x, f: [*map(f, x)], transforms, images) | |
data = {"pixel_values": images} | |
return BatchFeature(data=data, tensor_type=return_tensors) | |
class SigLipVisionConfig(PretrainedConfig): | |
model_type = "siglip_vision_model" | |
def __init__( | |
self, | |
hidden_size=1152, | |
image_mean=(0.5, 0.5, 0.5), | |
intermediate_size=4304, | |
num_hidden_layers=27, | |
num_attention_heads=16, | |
num_channels=3, | |
image_size=384, | |
patch_size=14, | |
hidden_act="gelu_pytorch_tanh", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.image_mean = image_mean | |
for key, value in kwargs.items(): | |
setattr(self, key, value) | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from SigLipConfig | |
if config_dict.get("model_type") == "siglip": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->SigLip | |
class SigLipVisionModelOutput(ModelOutput): | |
""" | |
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
Args: | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
The image embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
image_embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class SigLipVisionEmbeddings(nn.Module): | |
def __init__(self, config: SigLipVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding="valid", | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] | |
embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
embeddings = embeddings + self.position_embedding(self.position_ids) | |
return embeddings | |
class SigLipAttentionToMe(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim ** -0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
size: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
batch_size, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
k_v_seq_len = key_states.shape[-2] | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
if size is not None: | |
attn_weights += size.log()[:, None, None, :, 0] | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights, key_states.mean(dim=1) | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->SigLip | |
class SigLipMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class SigLipEncoderLayerToMe(nn.Module): | |
def __init__(self, config: SigLipVisionConfig, layer_id=None): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = SigLipAttentionToMe(config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = SigLipMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.r = config.tome_r | |
self.layer_id = layer_id | |
# Ignore copy | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
attention_size=None, | |
source=None, | |
trace_source=False | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
attention_mask (`torch.FloatTensor`): | |
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights, metric = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
size=attention_size | |
) | |
hidden_states = residual + hidden_states | |
if self.r > 0: | |
merge, unmerge = bipartite_soft_matching( | |
metric, | |
r=self.r, | |
class_token=False, | |
distill_token=False | |
) | |
if trace_source: | |
source = merge_source(merge, hidden_states, source) | |
hidden_states, attention_size = merge_wavg(merge, hidden_states, attention_size) | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
if trace_source: | |
outputs += (source,) | |
outputs += (attention_size,) | |
return outputs | |
class SigLipPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = SigLipVisionConfig | |
base_model_prefix = "siglip" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
pass | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->SigLip | |
class SigLipEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`SigLipEncoderLayer`]. | |
Args: | |
config: SigLipVisionConfig | |
""" | |
def __init__(self, config: SigLipVisionConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([SigLipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
# Ignore copy | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for encoder_layer in self.layers: | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->SigLip | |
class SigLipEncoderToMe(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`SigLipEncoderLayerToMe`]. | |
Args: | |
config: SigLipVisionConfig | |
""" | |
def __init__(self, config: SigLipVisionConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([SigLipEncoderLayerToMe(config, layer_id=layer_id) for layer_id in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
self.trace_source = getattr(config, 'trace_source', False) | |
# Ignore copy | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
attention_size = None | |
source = None | |
for encoder_layer in self.layers: | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
attention_size, | |
source if self.trace_source else None, | |
self.trace_source | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
attention_size=attention_size, | |
source=source if self.trace_source else None, | |
trace_source=self.trace_source | |
) | |
hidden_states = layer_outputs[0] | |
if self.trace_source: | |
source = layer_outputs[-2] | |
attention_size = layer_outputs[-1] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class SigLipVisionTransformer(nn.Module): | |
def __init__(self, config: SigLipVisionConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = SigLipVisionEmbeddings(config) | |
self.encoder = SigLipEncoderToMe(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.head = SigLipMultiheadAttentionPoolingHead(config) | |
def forward( | |
self, | |
pixel_values, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
hidden_states = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
pooled_output = self.head(last_hidden_state) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class SigLipMultiheadAttentionPoolingHead(nn.Module): | |
"""Multihead Attention Pooling.""" | |
def __init__(self, config: SigLipVisionConfig): | |
super().__init__() | |
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.mlp = SigLipMLP(config) | |
def forward(self, hidden_state): | |
batch_size = hidden_state.shape[0] | |
probe = self.probe.repeat(batch_size, 1, 1) | |
hidden_state = self.attention(probe, hidden_state, hidden_state)[0] | |
residual = hidden_state | |
hidden_state = self.layernorm(hidden_state) | |
hidden_state = residual + self.mlp(hidden_state) | |
return hidden_state[:, 0] | |
class SigLipVisionModel(SigLipPreTrainedModel): | |
config_class = SigLipVisionConfig | |
main_input_name = "pixel_values" | |
_no_split_modules = ["SigLipEncoderLayerToMe"] | |
def __init__(self, config: SigLipVisionConfig): | |
super().__init__(config) | |
self.vision_model = SigLipVisionTransformer(config) | |
del self.vision_model.encoder.layers[-1:] | |
self.vision_model.head = nn.Identity() | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.vision_model.embeddings.patch_embedding | |
def forward( | |
self, | |
pixel_values, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, SigLipVisionModel | |
>>> model = SigLipVisionModel.from_pretrained("google/siglip-base-patch16-224") | |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_state = outputs.last_hidden_state | |
>>> pooled_output = outputs.pooler_output # pooled features | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class SigLipVisionTower(nn.Module): | |
def __init__(self, vision_tower, vision_tower_cfg, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
if vision_tower is not None: | |
self.config = SigLipVisionConfig.from_pretrained(vision_tower) | |
else: | |
self.config = SigLipVisionConfig() | |
self.vision_tower_name = vision_tower | |
self.image_processor = SigLipImageProcessor(size=(self.config.image_size, self.config.image_size), image_mean=self.config.image_mean) | |
if not delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = self.config | |
def load_model(self): | |
if self.is_loaded: | |
return | |
self.vision_tower = SigLipVisionModel.from_pretrained(self.vision_tower_name) | |
self.vision_tower.requires_grad_(False) | |
self.vision_tower.eval() | |
self.is_loaded = True | |
# @torch.no_grad() | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), | |
output_hidden_states=True) | |
image_feature = image_forward_out.hidden_states[-1].to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), | |
output_hidden_states=True) | |
image_features = image_forward_outs.hidden_states[-1].to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
for p in self.vision_tower.parameters(): | |
return p.dtype | |
def device(self): | |
for p in self.vision_tower.parameters(): | |
return p.device | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |