Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Phi model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json", | |
} | |
class PhiConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the Phi | |
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 51200): | |
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`PhiModel`]. | |
hidden_size (`int`, *optional*, defaults to 2048): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 8192): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer decoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
resid_pdrop (`float`, *optional*, defaults to 0.0): | |
Dropout probability for mlp outputs. | |
embd_pdrop (`int`, *optional*, defaults to 0.0): | |
The dropout ratio for the embeddings. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio after computing the attention scores. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 | |
tokens. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | |
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format | |
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | |
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how | |
these scaling strategies behave: | |
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This | |
is an experimental feature, subject to breaking API changes in future versions. | |
partial_rotary_factor (`float`, *optional*, defaults to 0.5): | |
Percentage of the query and keys which will have rotary embedding. | |
qk_layernorm (`bool`, *optional*, defaults to `False`): | |
Whether or not to normalize the Queries and Keys after projecting the hidden states. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
Denotes beginning of sequences token id. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
Denotes end of sequences token id. | |
Example: | |
```python | |
>>> from transformers import PhiModel, PhiConfig | |
>>> # Initializing a Phi-1 style configuration | |
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") | |
>>> # Initializing a model from the configuration | |
>>> model = PhiModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "phi" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=51200, | |
hidden_size=2048, | |
intermediate_size=8192, | |
num_hidden_layers=24, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
resid_pdrop=0.0, | |
embd_pdrop=0.0, | |
attention_dropout=0.0, | |
hidden_act="gelu_new", | |
max_position_embeddings=2048, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
use_cache=True, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
partial_rotary_factor=0.5, | |
qk_layernorm=False, | |
bos_token_id=1, | |
eos_token_id=2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attention_dropout = attention_dropout | |
self.hidden_act = hidden_act | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self.partial_rotary_factor = partial_rotary_factor | |
self.qk_layernorm = qk_layernorm | |
self._rope_scaling_validation() | |
super().__init__( | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation | |
def _rope_scaling_validation(self): | |
""" | |
Validate the `rope_scaling` configuration. | |
""" | |
if self.rope_scaling is None: | |
return | |
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | |
raise ValueError( | |
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " | |
f"got {self.rope_scaling}" | |
) | |
rope_scaling_type = self.rope_scaling.get("type", None) | |
rope_scaling_factor = self.rope_scaling.get("factor", None) | |
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | |
raise ValueError( | |
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | |
) | |
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | |
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") | |