Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,007 Bytes
d6bc023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
from typing import Union
import math
import torch
import torch.nn as nn
import re
from einops import rearrange, repeat
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
class ResamplerBlock(nn.Module):
def __init__(
self,
hidden_size: int = 768,
image_hidden_size: int = 1024,
num_heads: int = 12,
intermediate_size: int = None
):
super().__init__()
assert hidden_size % num_heads == 0, "For MHSA, you must have number of heads divisible by initial hidden size"
intermediate_size = hidden_size * 4 if intermediate_size is None else intermediate_size
# intermediate_size = hidden_size * 4
self.scale = 1 / math.sqrt(hidden_size // num_heads)
self.num_heads = num_heads
self.to_q = nn.Linear(hidden_size, hidden_size, bias=False)
self.to_k = nn.Linear(image_hidden_size, hidden_size, bias=False)
self.to_v = nn.Linear(image_hidden_size, hidden_size, bias=False)
self.to_out = nn.Linear(hidden_size, hidden_size, bias=False)
self.feed_forward = nn.Sequential(
*[
nn.LayerNorm(hidden_size),
nn.Linear(hidden_size, intermediate_size, bias=False),
nn.GELU(),
nn.Linear(intermediate_size, hidden_size, bias=False),
]
)
# prenorm for image features
self.norm_image = nn.LayerNorm(image_hidden_size)
self.norm_hidden = nn.LayerNorm(hidden_size)
def forward(self, hidden_states: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
# prenorm
x = self.norm_image(x)
residual_hidden_states = hidden_states
hidden_states = self.norm_hidden(hidden_states)
# compute Q, K, V
queries = self.to_q(hidden_states)
keys = self.to_k(x)
values = self.to_v(x)
# rearrange them into multi-head format
queries = rearrange(queries, "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(keys, "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(values, "b n (h d) -> b h n d", h=self.num_heads)
# rescale
queries = self.scale * queries
# compute QK^T
scores = torch.einsum("... i d, ... j d -> ... i j", queries, keys)
# for stability
scores = scores - scores.amax(dim=-1, keepdim=True).detach()
# softmax
attention_scores = scores.softmax(dim=-1) # b h i j (i: number of queries, j: number of keys)
# dot product with V
out = torch.einsum("... i j, ... j d -> ... i d", attention_scores, values)
out = rearrange(out, "b h n d -> b n (h d)", h=self.num_heads)
out = self.to_out(out) + residual_hidden_states
residual_out = out
out = self.feed_forward(out)
return out + residual_out
class Resampler(nn.Module):
def __init__(
self,
hidden_size: int = 768,
image_hidden_size: int = 1024,
final_hidden_size: int = 4096,
num_heads: int = 12,
intermediate_size: int = None,
num_queries: int = 128,
num_layers: int = 3,
initializer_range: float = 0.02
):
super().__init__()
self.resampler_blocks = nn.ModuleList(
[
ResamplerBlock(
hidden_size, image_hidden_size, num_heads, intermediate_size
) for _ in range(num_layers)
]
)
self.queries = nn.Parameter(torch.randn(num_queries, hidden_size))
self.post_norm = nn.LayerNorm(hidden_size)
self.final_proj = nn.Linear(hidden_size, final_hidden_size, bias=False)
# self.initializer_range = initializer_range
# for module in self.modules():
# if isinstance(module, (nn.Linear, nn.LayerNorm, nn.Conv2d)):
# self._init_weights(module)
#
# def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
# """Initialize the weights"""
# if isinstance(module, (nn.Linear, nn.Conv2d)):
# # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# # `trunc_normal_cpu` not implemented in `half` issues
# module.weight.data = nn.init.trunc_normal_(
# module.weight.data.to(torch.float32), mean=0.0, std=self.initializer_range
# ).to(module.weight.dtype)
# if module.bias is not None:
# module.bias.data.zero_()
# elif isinstance(module, nn.LayerNorm):
# module.bias.data.zero_()
# module.weight.data.fill_(1.0)
def forward(self, image_hidden_states: torch.Tensor) -> torch.Tensor:
b = image_hidden_states.size(0)
queries = repeat(self.queries, 'n d -> b n d', b=b)
for resampler_block in self.resampler_blocks:
queries = resampler_block(queries, image_hidden_states)
# post norm
queries = self.post_norm(queries)
return self.final_proj(queries)
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
if projector_type == 'resampler':
hidden_size = getattr(config, 'resampler_hidden_size', 768)
image_hidden_size = config.mm_hidden_size
num_queries = getattr(config, 'num_queries', 128)
final_hidden_size = config.hidden_size
num_heads = 12
if hidden_size == 512:
num_heads = 8
num_layers = getattr(config, 'num_resampler_layers', 3)
initializer_range = getattr(config, 'initializer_range', 0.02)
print(
f"resampler config: resampler hidden size: {hidden_size}, num_queries: {num_queries}, "
f"num_resampler_layers: {num_layers}"
)
return Resampler(
hidden_size=hidden_size,
image_hidden_size=image_hidden_size,
num_queries=num_queries,
final_hidden_size=final_hidden_size,
num_layers=num_layers,
num_heads=num_heads,
initializer_range=initializer_range
)
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
mlp = nn.Sequential(*modules)
if getattr(config, 'load_moe_mm_projector', False):
from deepspeed.moe.layer import MoE
mlp = MoE(
config.mm_hidden_size,
expert=mlp,
num_experts=4,
ep_size=1,
k=2,
capacity_factor=1.,
eval_capacity_factor=1.,
min_capacity=4,
use_residual=False,
)
def moe_forward_wrapper(forward_func):
return lambda *args, **kwargs: forward_func(*args, **kwargs)[0]
mlp.forward = moe_forward_wrapper(mlp.forward)
return mlp
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
|