File size: 8,007 Bytes
d6bc023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from typing import Union
import math
import torch
import torch.nn as nn
import re

from einops import rearrange, repeat


class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}


class SimpleResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels),
            nn.GELU(),
            nn.Linear(channels, channels)
        )
    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


class ResamplerBlock(nn.Module):
    def __init__(
        self,
        hidden_size: int = 768,
        image_hidden_size: int = 1024,
        num_heads: int = 12,
        intermediate_size: int = None
    ):
        super().__init__()
        assert hidden_size % num_heads == 0, "For MHSA, you must have number of heads divisible by initial hidden size"
        intermediate_size = hidden_size * 4 if intermediate_size is None else intermediate_size
        # intermediate_size = hidden_size * 4
        self.scale = 1 / math.sqrt(hidden_size // num_heads)
        self.num_heads = num_heads
        self.to_q = nn.Linear(hidden_size, hidden_size, bias=False)
        self.to_k = nn.Linear(image_hidden_size, hidden_size, bias=False)
        self.to_v = nn.Linear(image_hidden_size, hidden_size, bias=False)

        self.to_out = nn.Linear(hidden_size, hidden_size, bias=False)

        self.feed_forward = nn.Sequential(
            *[
                nn.LayerNorm(hidden_size),
                nn.Linear(hidden_size, intermediate_size, bias=False),
                nn.GELU(),
                nn.Linear(intermediate_size, hidden_size, bias=False),
            ]
        )
        # prenorm for image features
        self.norm_image = nn.LayerNorm(image_hidden_size)
        self.norm_hidden = nn.LayerNorm(hidden_size)

    def forward(self, hidden_states: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
        # prenorm
        x = self.norm_image(x)
        residual_hidden_states = hidden_states
        hidden_states = self.norm_hidden(hidden_states)
        # compute Q, K, V
        queries = self.to_q(hidden_states)
        keys = self.to_k(x)
        values = self.to_v(x)
        # rearrange them into multi-head format
        queries = rearrange(queries, "b n (h d) -> b h n d", h=self.num_heads)
        keys = rearrange(keys, "b n (h d) -> b h n d", h=self.num_heads)
        values = rearrange(values, "b n (h d) -> b h n d", h=self.num_heads)
        # rescale
        queries = self.scale * queries
        # compute QK^T
        scores = torch.einsum("... i d, ... j d -> ... i j", queries, keys)
        # for stability
        scores = scores - scores.amax(dim=-1, keepdim=True).detach()
        # softmax
        attention_scores = scores.softmax(dim=-1)   # b h i j (i: number of queries, j: number of keys)
        # dot product with V
        out = torch.einsum("... i j, ... j d -> ... i d", attention_scores, values)
        out = rearrange(out, "b h n d -> b n (h d)", h=self.num_heads)
        out = self.to_out(out) + residual_hidden_states
        residual_out = out
        out = self.feed_forward(out)
        return out + residual_out


class Resampler(nn.Module):
    def __init__(
        self,
        hidden_size: int = 768,
        image_hidden_size: int = 1024,
        final_hidden_size: int = 4096,
        num_heads: int = 12,
        intermediate_size: int = None,
        num_queries: int = 128,
        num_layers: int = 3,
        initializer_range: float = 0.02
    ):
        super().__init__()
        self.resampler_blocks = nn.ModuleList(
            [
                ResamplerBlock(
                    hidden_size, image_hidden_size, num_heads, intermediate_size
                ) for _ in range(num_layers)
            ]
        )
        self.queries = nn.Parameter(torch.randn(num_queries, hidden_size))
        self.post_norm = nn.LayerNorm(hidden_size)

        self.final_proj = nn.Linear(hidden_size, final_hidden_size, bias=False)

    #     self.initializer_range = initializer_range
    #     for module in self.modules():
    #         if isinstance(module, (nn.Linear, nn.LayerNorm, nn.Conv2d)):
    #             self._init_weights(module)
    #
    # def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
    #     """Initialize the weights"""
    #     if isinstance(module, (nn.Linear, nn.Conv2d)):
    #         # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
    #         # `trunc_normal_cpu` not implemented in `half` issues
    #         module.weight.data = nn.init.trunc_normal_(
    #             module.weight.data.to(torch.float32), mean=0.0, std=self.initializer_range
    #         ).to(module.weight.dtype)
    #         if module.bias is not None:
    #             module.bias.data.zero_()
    #     elif isinstance(module, nn.LayerNorm):
    #         module.bias.data.zero_()
    #         module.weight.data.fill_(1.0)

    def forward(self, image_hidden_states: torch.Tensor) -> torch.Tensor:
        b = image_hidden_states.size(0)
        queries = repeat(self.queries, 'n d -> b n d', b=b)
        for resampler_block in self.resampler_blocks:
            queries = resampler_block(queries, image_hidden_states)

        # post norm
        queries = self.post_norm(queries)
        return self.final_proj(queries)


def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)

    if projector_type == 'resampler':
        hidden_size = getattr(config, 'resampler_hidden_size', 768)
        image_hidden_size = config.mm_hidden_size
        num_queries = getattr(config, 'num_queries', 128)
        final_hidden_size = config.hidden_size
        num_heads = 12
        if hidden_size == 512:
            num_heads = 8
        num_layers = getattr(config, 'num_resampler_layers', 3)

        initializer_range = getattr(config, 'initializer_range', 0.02)
        print(
            f"resampler config: resampler hidden size: {hidden_size}, num_queries: {num_queries}, "
            f"num_resampler_layers: {num_layers}"
        )
        return Resampler(
            hidden_size=hidden_size,
            image_hidden_size=image_hidden_size,
            num_queries=num_queries,
            final_hidden_size=final_hidden_size,
            num_layers=num_layers,
            num_heads=num_heads,
            initializer_range=initializer_range
        )

    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        mlp = nn.Sequential(*modules)
        if getattr(config, 'load_moe_mm_projector', False):
            from deepspeed.moe.layer import MoE
            mlp = MoE(
                config.mm_hidden_size,
                expert=mlp,
                num_experts=4,
                ep_size=1,
                k=2,
                capacity_factor=1.,
                eval_capacity_factor=1.,
                min_capacity=4,
                use_residual=False,
            )

            def moe_forward_wrapper(forward_func):
                return lambda *args, **kwargs: forward_func(*args, **kwargs)[0]
            mlp.forward = moe_forward_wrapper(mlp.forward)
        return mlp

    if projector_type == 'identity':
        return IdentityMap()

    raise ValueError(f'Unknown projector type: {projector_type}')