Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import torchaudio
|
3 |
import torchaudio.transforms as T
|
4 |
-
from transformers import
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import io
|
8 |
|
9 |
-
def transcribe_audio(audio_bytes):
|
10 |
-
# Load audio
|
11 |
-
waveform, sample_rate = torchaudio.load(io.BytesIO(audio_bytes), normalize=True)
|
12 |
-
|
13 |
-
# Resample to 16kHz if necessary
|
14 |
-
if sample_rate != 16000:
|
15 |
-
resampler = T.Resample(orig_freq=sample_rate, new_freq=16000)
|
16 |
-
waveform = resampler(waveform)
|
17 |
-
sample_rate = 16000
|
18 |
-
|
19 |
-
# Transcription
|
20 |
-
inputs = asr_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt", padding=True)
|
21 |
-
with torch.no_grad():
|
22 |
-
logits = asr_model(input_values=inputs.input_values).logits
|
23 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
24 |
-
transcription = asr_processor.decode(predicted_ids[0])
|
25 |
-
return transcription
|
26 |
-
|
27 |
# Load models
|
28 |
asr_model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-large-robust-ft-swbd-300h")
|
29 |
asr_processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-robust-ft-swbd-300h")
|
@@ -68,9 +50,20 @@ def generate_reply(text):
|
|
68 |
return reply
|
69 |
|
70 |
def text_to_speech(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
inputs = tts_processor(text=text, return_tensors="pt")
|
72 |
with torch.no_grad():
|
73 |
-
spectrogram = tts_model.generate(
|
|
|
|
|
|
|
74 |
return spectrogram
|
75 |
|
76 |
# Streamlit app
|
@@ -98,9 +91,11 @@ if audio_input:
|
|
98 |
|
99 |
# Convert text to speech
|
100 |
spectrogram = text_to_speech(reply_text)
|
101 |
-
|
|
|
|
|
102 |
audio_file = io.BytesIO()
|
103 |
-
torchaudio.save(audio_file,
|
104 |
audio_file.seek(0)
|
105 |
|
106 |
st.audio(audio_file, format="audio/wav")
|
|
|
1 |
import streamlit as st
|
2 |
import torchaudio
|
3 |
import torchaudio.transforms as T
|
4 |
+
from transformers import AutoProcessor, AutoModelForCTC, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToSpectrogram
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import io
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Load models
|
10 |
asr_model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-large-robust-ft-swbd-300h")
|
11 |
asr_processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-robust-ft-swbd-300h")
|
|
|
50 |
return reply
|
51 |
|
52 |
def text_to_speech(text):
|
53 |
+
# Load speaker embeddings
|
54 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
55 |
+
from datasets import load_dataset
|
56 |
+
|
57 |
+
# Load pre-trained speaker embeddings (assuming you have downloaded them)
|
58 |
+
dataset = load_dataset("Matthijs/cmu-arctic-xvectors")
|
59 |
+
speaker_embeddings = dataset['train'][0]['xvector']
|
60 |
+
|
61 |
inputs = tts_processor(text=text, return_tensors="pt")
|
62 |
with torch.no_grad():
|
63 |
+
spectrogram = tts_model.generate(
|
64 |
+
**inputs,
|
65 |
+
speaker_embeddings=speaker_embeddings
|
66 |
+
)
|
67 |
return spectrogram
|
68 |
|
69 |
# Streamlit app
|
|
|
91 |
|
92 |
# Convert text to speech
|
93 |
spectrogram = text_to_speech(reply_text)
|
94 |
+
|
95 |
+
# Convert spectrogram to waveform for saving
|
96 |
+
waveform = tts_processor.convert_spectrogram_to_waveform(spectrogram)
|
97 |
audio_file = io.BytesIO()
|
98 |
+
torchaudio.save(audio_file, waveform, 22050) # assuming 22050 Hz sample rate
|
99 |
audio_file.seek(0)
|
100 |
|
101 |
st.audio(audio_file, format="audio/wav")
|