LinB203
m
a220803
raw
history blame
28 kB
from ..modeling_videobase import VideoBaseAE
import torch
from torch import nn, Tensor
import numpy as np
import torch.distributed as dist
import torch.nn.functional as F
import math
import os
import json
from typing import Tuple, Dict, Union
from .configuration_vqvae import VQVAEConfiguration
# Copied from https://github.com/wilson1yan/VideoGPT
def view_range(x, i, j, shape):
shape = tuple(shape)
n_dims = len(x.shape)
if i < 0:
i = n_dims + i
if j is None:
j = n_dims
elif j < 0:
j = n_dims + j
assert 0 <= i < j <= n_dims
x_shape = x.shape
target_shape = x_shape[:i] + shape + x_shape[j:]
return x.view(target_shape)
# Copied from https://github.com/wilson1yan/VideoGPT
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
n_dims = len(x.shape)
if src_dim < 0:
src_dim = n_dims + src_dim
if dest_dim < 0:
dest_dim = n_dims + dest_dim
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
dims = list(range(n_dims))
del dims[src_dim]
permutation = []
ctr = 0
for i in range(n_dims):
if i == dest_dim:
permutation.append(src_dim)
else:
permutation.append(dims[ctr])
ctr += 1
x = x.permute(permutation)
if make_contiguous:
x = x.contiguous()
return x
# Copied from https://github.com/wilson1yan/VideoGPT
def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0.0, training=True):
# Performs scaled dot-product attention over the second to last dimension dn
# (b, n_head, d1, ..., dn, d)
attn = torch.matmul(q, k.transpose(-1, -2))
attn = attn / np.sqrt(q.shape[-1])
if mask is not None:
attn = attn.masked_fill(mask == 0, float("-inf"))
attn_float = F.softmax(attn, dim=-1)
attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d
attn = F.dropout(attn, p=attn_dropout, training=training)
a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d
return a
# Copied from https://github.com/wilson1yan/VideoGPT
class AxialBlock(nn.Module):
def __init__(self, n_hiddens, n_head):
super().__init__()
kwargs = dict(
shape=(0,) * 3,
dim_q=n_hiddens,
dim_kv=n_hiddens,
n_head=n_head,
n_layer=1,
causal=False,
attn_type="axial",
)
self.attn_w = MultiHeadAttention(attn_kwargs=dict(axial_dim=-2), **kwargs)
self.attn_h = MultiHeadAttention(attn_kwargs=dict(axial_dim=-3), **kwargs)
self.attn_t = MultiHeadAttention(attn_kwargs=dict(axial_dim=-4), **kwargs)
def forward(self, x):
x = shift_dim(x, 1, -1)
x = self.attn_w(x, x, x) + self.attn_h(x, x, x) + self.attn_t(x, x, x)
x = shift_dim(x, -1, 1)
return x
# Copied from https://github.com/wilson1yan/VideoGPT
class AttentionResidualBlock(nn.Module):
def __init__(self, n_hiddens):
super().__init__()
self.block = nn.Sequential(
nn.BatchNorm3d(n_hiddens),
nn.ReLU(),
SamePadConv3d(n_hiddens, n_hiddens // 2, 3, bias=False),
nn.BatchNorm3d(n_hiddens // 2),
nn.ReLU(),
SamePadConv3d(n_hiddens // 2, n_hiddens, 1, bias=False),
nn.BatchNorm3d(n_hiddens),
nn.ReLU(),
AxialBlock(n_hiddens, 2),
)
def forward(self, x):
return x + self.block(x)
# Copied from https://github.com/wilson1yan/VideoGPT
class Codebook(nn.Module):
def __init__(self, n_codes, embedding_dim):
super().__init__()
self.register_buffer("embeddings", torch.randn(n_codes, embedding_dim))
self.register_buffer("N", torch.zeros(n_codes))
self.register_buffer("z_avg", self.embeddings.data.clone())
self.n_codes = n_codes
self.embedding_dim = embedding_dim
self._need_init = True
def _tile(self, x):
d, ew = x.shape
if d < self.n_codes:
n_repeats = (self.n_codes + d - 1) // d
std = 0.01 / np.sqrt(ew)
x = x.repeat(n_repeats, 1)
x = x + torch.randn_like(x) * std
return x
def _init_embeddings(self, z):
# z: [b, c, t, h, w]
self._need_init = False
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2)
y = self._tile(flat_inputs)
d = y.shape[0]
_k_rand = y[torch.randperm(y.shape[0])][: self.n_codes]
if dist.is_initialized():
dist.broadcast(_k_rand, 0)
self.embeddings.data.copy_(_k_rand)
self.z_avg.data.copy_(_k_rand)
self.N.data.copy_(torch.ones(self.n_codes))
def forward(self, z):
# z: [b, c, t, h, w]
if self._need_init and self.training:
self._init_embeddings(z)
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2)
distances = (
(flat_inputs**2).sum(dim=1, keepdim=True)
- 2 * flat_inputs @ self.embeddings.t()
+ (self.embeddings.t() ** 2).sum(dim=0, keepdim=True)
)
encoding_indices = torch.argmin(distances, dim=1)
encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs)
encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:])
embeddings = F.embedding(encoding_indices, self.embeddings)
embeddings = shift_dim(embeddings, -1, 1)
commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach())
# EMA codebook update
if self.training:
n_total = encode_onehot.sum(dim=0)
encode_sum = flat_inputs.t() @ encode_onehot
if dist.is_initialized():
dist.all_reduce(n_total)
dist.all_reduce(encode_sum)
self.N.data.mul_(0.99).add_(n_total, alpha=0.01)
self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01)
n = self.N.sum()
weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n
encode_normalized = self.z_avg / weights.unsqueeze(1)
self.embeddings.data.copy_(encode_normalized)
y = self._tile(flat_inputs)
_k_rand = y[torch.randperm(y.shape[0])][: self.n_codes]
if dist.is_initialized():
dist.broadcast(_k_rand, 0)
usage = (self.N.view(self.n_codes, 1) >= 1).float()
self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage))
embeddings_st = (embeddings - z).detach() + z
avg_probs = torch.mean(encode_onehot, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
return dict(
embeddings=embeddings_st,
encodings=encoding_indices,
commitment_loss=commitment_loss,
perplexity=perplexity,
)
def dictionary_lookup(self, encodings):
embeddings = F.embedding(encodings, self.embeddings)
return embeddings
# Copied from https://github.com/wilson1yan/VideoGPT
class Encoder(nn.Module):
def __init__(self, n_hiddens, n_res_layers, downsample):
super().__init__()
n_times_downsample = np.array([int(math.log2(d)) for d in downsample])
self.convs = nn.ModuleList()
max_ds = n_times_downsample.max()
for i in range(max_ds):
in_channels = 3 if i == 0 else n_hiddens
stride = tuple([2 if d > 0 else 1 for d in n_times_downsample])
conv = SamePadConv3d(in_channels, n_hiddens, 4, stride=stride)
self.convs.append(conv)
n_times_downsample -= 1
self.conv_last = SamePadConv3d(in_channels, n_hiddens, kernel_size=3)
self.res_stack = nn.Sequential(
*[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)],
nn.BatchNorm3d(n_hiddens),
nn.ReLU(),
)
def forward(self, x):
h = x
for conv in self.convs:
h = F.relu(conv(h))
h = self.conv_last(h)
h = self.res_stack(h)
return h
# Copied from https://github.com/wilson1yan/VideoGPT
class MultiHeadAttention(nn.Module):
def __init__(
self, shape, dim_q, dim_kv, n_head, n_layer, causal, attn_type, attn_kwargs
):
super().__init__()
self.causal = causal
self.shape = shape
self.d_k = dim_q // n_head
self.d_v = dim_kv // n_head
self.n_head = n_head
self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q
self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q))
self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k
self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))
self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v
self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))
self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c
self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer))
if attn_type == "full":
self.attn = FullAttention(shape, causal, **attn_kwargs)
elif attn_type == "axial":
assert not causal, "causal axial attention is not supported"
self.attn = AxialAttention(len(shape), **attn_kwargs)
elif attn_type == "sparse":
self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs)
self.cache = None
def forward(self, q, k, v, decode_step=None, decode_idx=None):
"""Compute multi-head attention
Args
q, k, v: a [b, d1, ..., dn, c] tensor or
a [b, 1, ..., 1, c] tensor if decode_step is not None
Returns
The output after performing attention
"""
# compute k, q, v
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
q = view_range(self.w_qs(q), -1, None, (n_head, d_k))
k = view_range(self.w_ks(k), -1, None, (n_head, d_k))
v = view_range(self.w_vs(v), -1, None, (n_head, d_v))
# b x n_head x seq_len x d
# (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d)
q = shift_dim(q, -2, 1)
k = shift_dim(k, -2, 1)
v = shift_dim(v, -2, 1)
# fast decoding
if decode_step is not None:
if decode_step == 0:
if self.causal:
k_shape = (q.shape[0], n_head, *self.shape, self.d_k)
v_shape = (q.shape[0], n_head, *self.shape, self.d_v)
self.cache = dict(
k=torch.zeros(k_shape, dtype=k.dtype, device=q.device),
v=torch.zeros(v_shape, dtype=v.dtype, device=q.device),
)
else:
# cache only once in the non-causal case
self.cache = dict(k=k.clone(), v=v.clone())
if self.causal:
idx = (
slice(None, None),
slice(None, None),
*[slice(i, i + 1) for i in decode_idx],
)
self.cache["k"][idx] = k
self.cache["v"][idx] = v
k, v = self.cache["k"], self.cache["v"]
a = self.attn(q, k, v, decode_step, decode_idx)
# (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d)
a = shift_dim(a, 1, -2).flatten(start_dim=-2)
a = self.fc(a) # (b x seq_len x embd_dim)
return a
# Copied from https://github.com/wilson1yan/VideoGPT
class Decoder(nn.Module):
def __init__(self, n_hiddens, n_res_layers, upsample):
super().__init__()
self.res_stack = nn.Sequential(
*[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)],
nn.BatchNorm3d(n_hiddens),
nn.ReLU(),
)
n_times_upsample = np.array([int(math.log2(d)) for d in upsample])
max_us = n_times_upsample.max()
self.convts = nn.ModuleList()
for i in range(max_us):
out_channels = 3 if i == max_us - 1 else n_hiddens
us = tuple([2 if d > 0 else 1 for d in n_times_upsample])
convt = SamePadConvTranspose3d(n_hiddens, out_channels, 4, stride=us)
self.convts.append(convt)
n_times_upsample -= 1
def forward(self, x):
h = self.res_stack(x)
for i, convt in enumerate(self.convts):
h = convt(h)
if i < len(self.convts) - 1:
h = F.relu(h)
return h
# Copied from https://github.com/wilson1yan/VideoGPT
class SamePadConv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
# assumes that the input shape is divisible by stride
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
pad_input = []
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
pad_input.append((p // 2 + p % 2, p // 2))
pad_input = sum(pad_input, tuple())
self.pad_input = pad_input
self.conv = nn.Conv3d(
in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias
)
def forward(self, x):
return self.conv(F.pad(x, self.pad_input))
# Copied from https://github.com/wilson1yan/VideoGPT
class SamePadConvTranspose3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
pad_input = []
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
pad_input.append((p // 2 + p % 2, p // 2))
pad_input = sum(pad_input, tuple())
self.pad_input = pad_input
self.convt = nn.ConvTranspose3d(
in_channels,
out_channels,
kernel_size,
stride=stride,
bias=bias,
padding=tuple([k - 1 for k in kernel_size]),
)
def forward(self, x):
return self.convt(F.pad(x, self.pad_input))
# Copied from https://github.com/wilson1yan/VideoGPT
class FullAttention(nn.Module):
def __init__(self, shape, causal, attn_dropout):
super().__init__()
self.causal = causal
self.attn_dropout = attn_dropout
seq_len = np.prod(shape)
if self.causal:
self.register_buffer("mask", torch.tril(torch.ones(seq_len, seq_len)))
def forward(self, q, k, v, decode_step, decode_idx):
mask = self.mask if self.causal else None
if decode_step is not None and mask is not None:
mask = mask[[decode_step]]
old_shape = q.shape[2:-1]
q = q.flatten(start_dim=2, end_dim=-2)
k = k.flatten(start_dim=2, end_dim=-2)
v = v.flatten(start_dim=2, end_dim=-2)
out = scaled_dot_product_attention(
q, k, v, mask=mask, attn_dropout=self.attn_dropout, training=self.training
)
return view_range(out, 2, 3, old_shape)
# Copied from https://github.com/wilson1yan/VideoGPT
class AxialAttention(nn.Module):
def __init__(self, n_dim, axial_dim):
super().__init__()
if axial_dim < 0:
axial_dim = 2 + n_dim + 1 + axial_dim
else:
axial_dim += 2 # account for batch, head, dim
self.axial_dim = axial_dim
def forward(self, q, k, v, decode_step, decode_idx):
q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3)
k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3)
v = shift_dim(v, self.axial_dim, -2)
old_shape = list(v.shape)
v = v.flatten(end_dim=-3)
out = scaled_dot_product_attention(q, k, v, training=self.training)
out = out.view(*old_shape)
out = shift_dim(out, -2, self.axial_dim)
return out
# Copied from https://github.com/wilson1yan/VideoGPT
class StridedSparsityConfig(object):
"""
Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that
generalizes to arbitrary dimensions
"""
def __init__(self, shape, n_head, causal, block, num_local_blocks):
self.n_head = n_head
self.shape = shape
self.causal = causal
self.block = block
self.num_local_blocks = num_local_blocks
assert self.num_local_blocks >= 1, "Must have at least 1 local block"
assert self.seq_len % self.block == 0, "seq len must be divisible by block size"
self._block_shape = self._compute_block_shape()
self._block_shape_cum = self._block_shape_cum_sizes()
@property
def seq_len(self):
return np.prod(self.shape)
@property
def num_blocks(self):
return self.seq_len // self.block
def set_local_layout(self, layout):
num_blocks = self.num_blocks
for row in range(0, num_blocks):
end = min(row + self.num_local_blocks, num_blocks)
for col in range(
max(0, row - self.num_local_blocks), (row + 1 if self.causal else end)
):
layout[:, row, col] = 1
return layout
def set_global_layout(self, layout):
num_blocks = self.num_blocks
n_dim = len(self._block_shape)
for row in range(num_blocks):
assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row
cur_idx = self._to_unflattened_idx(row)
# no strided attention over last dim
for d in range(n_dim - 1):
end = self._block_shape[d]
for i in range(0, (cur_idx[d] + 1 if self.causal else end)):
new_idx = list(cur_idx)
new_idx[d] = i
new_idx = tuple(new_idx)
col = self._to_flattened_idx(new_idx)
layout[:, row, col] = 1
return layout
def make_layout(self):
layout = torch.zeros(
(self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64
)
layout = self.set_local_layout(layout)
layout = self.set_global_layout(layout)
return layout
def make_sparse_attn_mask(self):
block_layout = self.make_layout()
assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks
num_dense_blocks = block_layout.sum().item()
attn_mask = torch.ones(num_dense_blocks, self.block, self.block)
counter = 0
for h in range(self.n_head):
for i in range(self.num_blocks):
for j in range(self.num_blocks):
elem = block_layout[h, i, j].item()
if elem == 1:
assert i >= j
if i == j: # need to mask within block on diagonals
attn_mask[counter] = torch.tril(attn_mask[counter])
counter += 1
assert counter == num_dense_blocks
return attn_mask.unsqueeze(0)
def get_non_block_layout_row(self, block_layout, row):
block_row = row // self.block
block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks
block_row = block_row.repeat_interleave(self.block, dim=-1)
block_row[:, :, row + 1 :] = 0.0
return block_row
############# Helper functions ##########################
def _compute_block_shape(self):
n_dim = len(self.shape)
cum_prod = 1
for i in range(n_dim - 1, -1, -1):
cum_prod *= self.shape[i]
if cum_prod > self.block:
break
assert cum_prod % self.block == 0
new_shape = (*self.shape[:i], cum_prod // self.block)
assert np.prod(new_shape) == np.prod(self.shape) // self.block
return new_shape
def _block_shape_cum_sizes(self):
bs = np.flip(np.array(self._block_shape))
return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,)
def _to_flattened_idx(self, idx):
assert len(idx) == len(
self._block_shape
), f"{len(idx)} != {len(self._block_shape)}"
flat_idx = 0
for i in range(len(self._block_shape)):
flat_idx += idx[i] * self._block_shape_cum[i]
return flat_idx
def _to_unflattened_idx(self, flat_idx):
assert flat_idx < np.prod(self._block_shape)
idx = []
for i in range(len(self._block_shape)):
idx.append(flat_idx // self._block_shape_cum[i])
flat_idx %= self._block_shape_cum[i]
return tuple(idx)
# Copied from https://github.com/wilson1yan/VideoGPT
class SparseAttention(nn.Module):
ops = dict()
attn_mask = dict()
block_layout = dict()
def __init__(
self, shape, n_head, causal, num_local_blocks=4, block=32, attn_dropout=0.0
): # does not use attn_dropout
super().__init__()
self.causal = causal
self.shape = shape
self.sparsity_config = StridedSparsityConfig(
shape=shape,
n_head=n_head,
causal=causal,
block=block,
num_local_blocks=num_local_blocks,
)
if self.shape not in SparseAttention.block_layout:
SparseAttention.block_layout[self.shape] = (
self.sparsity_config.make_layout()
)
if causal and self.shape not in SparseAttention.attn_mask:
SparseAttention.attn_mask[self.shape] = (
self.sparsity_config.make_sparse_attn_mask()
)
def get_ops(self):
try:
from deepspeed.ops.sparse_attention import MatMul, Softmax
except:
raise Exception(
"Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`"
)
if self.shape not in SparseAttention.ops:
sparsity_layout = self.sparsity_config.make_layout()
sparse_dot_sdd_nt = MatMul(
sparsity_layout,
self.sparsity_config.block,
"sdd",
trans_a=False,
trans_b=True,
)
sparse_dot_dsd_nn = MatMul(
sparsity_layout,
self.sparsity_config.block,
"dsd",
trans_a=False,
trans_b=False,
)
sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block)
SparseAttention.ops[self.shape] = (
sparse_dot_sdd_nt,
sparse_dot_dsd_nn,
sparse_softmax,
)
return SparseAttention.ops[self.shape]
def forward(self, q, k, v, decode_step, decode_idx):
if self.training and self.shape not in SparseAttention.ops:
self.get_ops()
SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[
self.shape
].to(q)
if self.causal:
SparseAttention.attn_mask[self.shape] = (
SparseAttention.attn_mask[self.shape].to(q).type_as(q)
)
attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None
old_shape = q.shape[2:-1]
q = q.flatten(start_dim=2, end_dim=-2)
k = k.flatten(start_dim=2, end_dim=-2)
v = v.flatten(start_dim=2, end_dim=-2)
if decode_step is not None:
mask = self.sparsity_config.get_non_block_layout_row(
SparseAttention.block_layout[self.shape], decode_step
)
out = scaled_dot_product_attention(
q, k, v, mask=mask, training=self.training
)
else:
if q.shape != k.shape or k.shape != v.shape:
raise Exception("SparseAttention only support self-attention")
sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops()
scaling = float(q.shape[-1]) ** -0.5
attn_output_weights = sparse_dot_sdd_nt(q, k)
if attn_mask is not None:
attn_output_weights = attn_output_weights.masked_fill(
attn_mask == 0, float("-inf")
)
attn_output_weights = sparse_softmax(attn_output_weights, scale=scaling)
out = sparse_dot_dsd_nn(attn_output_weights, v)
return view_range(out, 2, 3, old_shape)
# Modified from https://github.com/wilson1yan/VideoGPT
class VQVAEModel(VideoBaseAE):
DOWNLOADED_VQVAE = {
"bair_stride4x2x2": "1iIAYJ2Qqrx5Q94s5eIXQYJgAydzvT_8L",
"ucf101_stride4x4x4": "1uuB_8WzHP_bbBmfuaIV7PK_Itl3DyHY5",
"kinetics_stride4x4x4": "1DOvOZnFAIQmux6hG7pN_HkyJZy3lXbCB",
"kinetics_stride2x4x4": "1jvtjjtrtE4cy6pl7DK_zWFEPY3RZt2pB",
}
def __init__(self, config: VQVAEConfiguration):
super().__init__()
self.config = config
self.embedding_dim = config.embedding_dim
self.n_codes = config.n_codes
self.encoder = Encoder(config.n_hiddens, config.n_res_layers, config.downsample)
self.decoder = Decoder(config.n_hiddens, config.n_res_layers, config.downsample)
self.pre_vq_conv = SamePadConv3d(config.n_hiddens, config.embedding_dim, 1)
self.post_vq_conv = SamePadConv3d(config.embedding_dim, config.n_hiddens, 1)
self.codebook = Codebook(config.n_codes, config.embedding_dim)
def forward(self, x):
z = self.pre_vq_conv(self.encoder(x))
vq_output = self.codebook(z)
x_recon = self.decoder(self.post_vq_conv(vq_output["embeddings"]))
recon_loss = F.mse_loss(x_recon, x) / 0.06
return recon_loss, x_recon, vq_output
def encode(self, x: Tensor, include_embeddings: bool = False) -> Union[Tuple[Tensor, Tensor], Tensor]:
h = self.pre_vq_conv(self.encoder(x))
vq_output: Dict[str, Tensor] = self.codebook(h)
if include_embeddings:
return vq_output["encodings"], vq_output["embeddings"]
else:
return vq_output["encodings"]
def decode(self, encodings: Tensor) -> Tensor:
h = F.embedding(encodings, self.codebook.embeddings)
h = self.post_vq_conv(shift_dim(h, -1, 1))
return self.decoder(h)
@classmethod
def load_from_checkpoint(cls, model_path):
if not os.path.isdir(model_path):
"""model downloaded from internet"""
model_cpkt = torch.load(model_path)
# Compatible with old videogpt model formats.
if "hyper_parameters" in model_cpkt:
hyper_parameters = vars(model_cpkt.get("hyper_parameters").get("args"))
state_dict = model_cpkt.get("state_dict")
model = cls(config=VQVAEConfiguration(**hyper_parameters))
model.load_state_dict(state_dict)
return model
else:
raise RuntimeError("Model checkpoint has a wrong format.")
else:
with open(os.path.join(model_path, "config.json"), "r") as file:
config = json.load(file)
state_dict = torch.load(os.path.join(model_path, "pytorch_model.bin"), map_location="cpu")
model = cls(config=VQVAEConfiguration(**config))
model.load_state_dict(state_dict)
return model
@classmethod
def download_and_load_model(cls, model_name, cache_dir=None):
from .....utils.downloader import gdown_download
path = gdown_download(
cls.DOWNLOADED_VQVAE[model_name], model_name, cache_dir=cache_dir
)
return cls.load_from_checkpoint(path)