File size: 5,982 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# import numpy as np
# import torch
# import torch.nn as nn
# from math import pi
# from einops import rearrange, repeat
#
# #################################################################################
# #                   Sine/Cosine Positional Embedding Functions                  #
# #################################################################################
# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
#
# def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
#     """
#     grid_size: int of the grid height and width
#     return:
#     pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
#     """
#     grid_h = np.arange(grid_size, dtype=np.float32)
#     grid_w = np.arange(grid_size, dtype=np.float32)
#     grid = np.meshgrid(grid_w, grid_h)  # here w goes first
#     grid = np.stack(grid, axis=0)
#
#     grid = grid.reshape([2, 1, grid_size, grid_size])
#     pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
#     if cls_token and extra_tokens > 0:
#         pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
#     return pos_embed
#
#
# def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
#     assert embed_dim % 2 == 0
#
#     # use half of dimensions to encode grid_h
#     emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
#     emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
#
#     emb = np.concatenate([emb_h, emb_w], axis=1)
#     return emb
#
#
# def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
#     """
#     embed_dim: output dimension for each position
#     pos: a list of positions to be encoded: size (M,)
#     out: (M, D)
#     """
#     assert embed_dim % 2 == 0
#     omega = np.arange(embed_dim // 2, dtype=np.float64)
#     omega /= embed_dim / 2.
#     omega = 1. / 10000**omega
#
#     pos = pos.reshape(-1)
#     out = np.einsum('m,d->md', pos, omega)
#
#     emb_sin = np.sin(out)
#     emb_cos = np.cos(out)
#
#     emb = np.concatenate([emb_sin, emb_cos], axis=1)
#     return emb
#
# def broadcat(tensors, dim=-1):
#     num_tensors = len(tensors)
#     shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
#     assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
#     shape_len = list(shape_lens)[0]
#     dim = (dim + shape_len) if dim < 0 else dim
#     dims = list(zip(*map(lambda t: list(t.shape), tensors)))
#     expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
#     assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
#     max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
#     expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
#     expanded_dims.insert(dim, (dim, dims[dim]))
#     expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
#     tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
#     return torch.cat(tensors, dim=dim)
#
#
# def rotate_half(x):
#     x = rearrange(x, '... (d r) -> ... d r', r=2)
#     x1, x2 = x.unbind(dim=-1)
#     x = torch.stack((-x2, x1), dim=-1)
#     return rearrange(x, '... d r -> ... (d r)')
#
# #################################################################################
# #                                  VisionRotary                                 #
# #################################################################################
# # References:
# # EVA: https://github.com/baaivision/EVA
# # Transformer升级之路:2、博采众长的旋转式位置编码: https://spaces.ac.cn/archives/8265
# # Transformer升级之路:4、二维位置的旋转式位置编码: https://spaces.ac.cn/archives/8397
#
# class VisionRotaryEmbeddingFast(nn.Module):
#     def __init__(
#         self,
#         dim,
#         pt_hw=(int, int),  # (H, W)
#         ft_hw=None,
#         custom_freqs = None,
#         freqs_for = 'lang',
#         theta = 10000,
#         max_freq = 10,
#         num_freqs = 1,
#     ):
#         super().__init__()
#         # Unlike a 1d RoPE, a 2d RoPE requires splitting the dimension into four parts
#         # References: https://spaces.ac.cn/archives/8397
#
#         if custom_freqs:
#             freqs = custom_freqs
#         elif freqs_for == 'lang':
#             freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
#         elif freqs_for == 'pixel':
#             freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
#         elif freqs_for == 'constant':
#             freqs = torch.ones(num_freqs).float()
#         else:
#             raise ValueError(f'unknown modality {freqs_for}')
#
#         if ft_hw is None: ft_hw = pt_hw
#         h_t = torch.arange(ft_hw[0]) / ft_hw[0] * pt_hw[0]
#         w_t = torch.arange(ft_hw[1]) / ft_hw[1] * pt_hw[1]
#
#         h_freqs = torch.einsum('..., f -> ... f', h_t, freqs)
#         w_freqs = torch.einsum('..., f -> ... f', w_t, freqs)
#
#         h_freqs = repeat(h_freqs, '... n -> ... (n r)', r=2)
#         w_freqs = repeat(w_freqs, '... n -> ... (n r)', r=2)
#
#         freqs = broadcat((h_freqs[:, None, :], w_freqs[None, :, :]), dim=-1)
#         freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
#         freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
#
#         self.register_buffer("freqs_cos", freqs_cos)
#         self.register_buffer("freqs_sin", freqs_sin)
#
#     def forward(self, t):
#         # 2d RoPE: [[cos(h*theta), -sin(h*theta), 0,            0            ],
#         #           [sin(h*theta), cos(h*theta),  0,            0            ],
#         #           [0,            0,             cos(w*theta), -sin(w*theta)],
#         #           [0,            0,             sin(w*theta), cos(w*theta) ],]
#
#         return t * self.freqs_cos + rotate_half(t) * self.freqs_sin