Spaces:
Running
Running
File size: 12,211 Bytes
b36652f f8d35c2 b36652f f8d35c2 b36652f f8d35c2 2dcc9b3 f8d35c2 b36652f f8d35c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import gradio as gr
import pandas as pd
import numpy as np
import os
from datetime import datetime
# Load the papers data
def load_papers():
try:
papers_df = pd.read_csv('all_papers_0328.csv')
# Clean up columns if needed and handle missing values
papers_df = papers_df.fillna('')
# Filter out papers with empty titles
papers_df = papers_df[papers_df['Title'].str.strip() != '']
# Ensure Year is integer
papers_df['Year'] = pd.to_numeric(papers_df['Year'], errors='coerce').fillna(0).astype(int)
return papers_df
except Exception as e:
print(f"Error loading papers: {e}")
# Return empty dataframe with expected columns
return pd.DataFrame(columns=['Title', 'TLDR-EN', 'Section', 'url', 'Year', 'Publish Venue'])
# Search function
def search_papers(search_term, section_filter, year_filter, sort_by):
papers_df = load_papers()
if search_term:
# Case-insensitive search across multiple columns
search_mask = (
papers_df['Title'].str.contains(search_term, case=False, na=False, regex=True) |
papers_df['TLDR-EN'].str.contains(search_term, case=False, na=False, regex=True) |
papers_df['Section'].str.contains(search_term, case=False, na=False, regex=True) |
papers_df['Publish Venue'].str.contains(search_term, case=False, na=False, regex=True)
)
papers_df = papers_df[search_mask]
# Apply section filter if selected
if section_filter != "All Sections":
papers_df = papers_df[papers_df['Section'] == section_filter]
# Apply year filter if selected
if year_filter != "All Years":
papers_df = papers_df[papers_df['Year'] == int(year_filter)]
# Sort based on selection
if sort_by == "Year (newest first)":
papers_df = papers_df.sort_values(by=['Year', 'Title'], ascending=[False, True])
elif sort_by == "Year (oldest first)":
papers_df = papers_df.sort_values(by=['Year', 'Title'], ascending=[True, True])
elif sort_by == "Title (A-Z)":
papers_df = papers_df.sort_values(by='Title')
elif sort_by == "Section":
papers_df = papers_df.sort_values(by=['Section', 'Year', 'Title'], ascending=[True, False, True])
# Format for display
html_output = "<div class='papers-container'>"
if len(papers_df) == 0:
html_output += "<p>No papers found matching your criteria.</p>"
else:
for i, row in papers_df.iterrows():
html_output += f"""
<div class='paper-card'>
<div class='paper-title'>
<a href='{row['url']}' target='_blank'>{row['Title']}</a>
</div>
<div class='paper-tldr'>{row['TLDR-EN']}</div>
<div class='paper-meta'>
<span class='meta-item section'>{row['Section']}</span>
<span class='meta-item year'>{row['Year']}</span>
<span class='meta-item venue'>{row['Publish Venue']}</span>
</div>
</div>
"""
html_output += "</div>"
# Add paper count
paper_count = len(papers_df)
count_text = f"<p><strong>{paper_count} papers</strong> found</p>"
return count_text + html_output
# Get unique sections and years for filtering
def get_filter_options():
papers_df = load_papers()
sections = ["All Sections"] + sorted(papers_df['Section'].unique().tolist())
years = ["All Years"] + [str(year) for year in sorted(papers_df['Year'].unique().tolist(), reverse=True) if year > 0]
return sections, years
# Custom CSS
custom_css = """
/* Main container */
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
}
.papers-container {
display: flex;
flex-direction: column;
gap: 18px;
margin-top: 20px;
}
/* Paper card styling */
.paper-card {
border: 1px solid #e0e0e0;
border-radius: 12px;
padding: 20px;
background-color: #ffffff;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
transition: all 0.2s ease;
display: flex;
flex-direction: column;
gap: 10px;
}
.paper-card:hover {
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
transform: translateY(-2px);
border-color: #d0d0d0;
}
.paper-title {
font-size: 18px;
font-weight: 600;
line-height: 1.4;
margin-bottom: 4px;
}
.paper-title a {
color: #2563EB;
text-decoration: none;
}
.paper-title a:hover {
text-decoration: underline;
}
.paper-tldr {
font-size: 14px;
color: #4B5563;
line-height: 1.5;
margin: 8px 0;
}
.paper-meta {
display: flex;
flex-wrap: wrap;
gap: 8px;
margin-top: 4px;
}
.meta-item {
background-color: #F3F4F6;
border-radius: 16px;
padding: 4px 12px;
font-size: 12px;
color: #4B5563;
font-weight: 500;
}
/* Section colors */
.meta-item.section {
background-color: #DBEAFE;
color: #1E40AF;
}
.meta-item.year {
background-color: #FEE2E2;
color: #991B1B;
}
.meta-item.venue {
background-color: #E0E7FF;
color: #3730A3;
}
/* Responsive design */
@media (max-width: 768px) {
.paper-card {
padding: 16px;
}
.paper-title {
font-size: 16px;
}
.paper-tldr {
font-size: 13px;
}
.meta-item {
font-size: 11px;
padding: 3px 10px;
}
}
/* Results count styling */
p strong {
color: #2563EB;
}
"""
# Create the Gradio interface
def create_interface():
sections, years = get_filter_options()
# Get paper statistics
papers_df = load_papers()
total_papers = len(papers_df)
paper_counts_by_section = papers_df['Section'].value_counts().to_dict()
paper_counts_by_year = papers_df['Year'].value_counts().to_dict()
# Filter out year 0 if it exists
min_year = min([year for year in paper_counts_by_year.keys() if year > 0]) if paper_counts_by_year else 'N/A'
max_year = max(paper_counts_by_year.keys()) if paper_counts_by_year else 'N/A'
# Project description with linked paper
project_description = f"""
# Large Language Model Agent: A Survey on Methodology, Applications and Challenges
This application showcases papers from our comprehensive survey on Large Language Model (LLM) agents. We organize papers across key categories including agent construction, collaboration mechanisms, evolution, tools, security, benchmarks, and applications.
## About the Survey
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments.
[View the full paper on arXiv](https://arxiv.org/abs/2503.21460)
[Explore our GitHub repository](https://github.com/luo-junyu/Awesome-Agent-Papers)
## Submit Your Paper
We welcome contributions to expand our collection. To submit your paper:
- Email us at [email protected] with your paper details
- Create a pull request on our [GitHub repository](https://github.com/luo-junyu/Awesome-Agent-Papers)
## Collection Overview
- **Total Papers**: {total_papers}
- **Categories**: {len(paper_counts_by_section)}
- **Year Range**: {min_year} - {max_year}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown(project_description)
with gr.Row():
with gr.Column(scale=3):
search_input = gr.Textbox(
label="Search Papers",
placeholder="Enter keywords to search titles, summaries, sections, or venues",
show_label=True
)
with gr.Column(scale=1):
section_dropdown = gr.Dropdown(
choices=sections,
value="All Sections",
label="Filter by Section"
)
with gr.Row():
with gr.Column(scale=1):
year_dropdown = gr.Dropdown(
choices=years,
value="All Years",
label="Filter by Year"
)
with gr.Column(scale=1):
sort_dropdown = gr.Dropdown(
choices=[
"Year (newest first)",
"Year (oldest first)",
"Title (A-Z)",
"Section"
],
value="Year (newest first)",
label="Sort by"
)
search_button = gr.Button("Search", variant="primary")
# Results display
results_html = gr.HTML(label="Search Results")
# Section distribution chart
section_data = [[section, count] for section, count in paper_counts_by_section.items()]
section_data.sort(key=lambda x: x[1], reverse=True)
with gr.Accordion("Paper Distribution by Section", open=False):
gr.Dataframe(
headers=["Section", "Count"],
datatype=["str", "number"],
value=section_data
)
# Year distribution chart
year_data = [[str(year), count] for year, count in paper_counts_by_year.items() if year > 0]
year_data.sort(key=lambda x: int(x[0]), reverse=True)
with gr.Accordion("Paper Distribution by Year", open=False):
gr.Dataframe(
headers=["Year", "Count"],
datatype=["str", "number"],
value=year_data
)
# # Add example searches
# gr.Examples(
# examples=[
# ["agent collaboration", "All Sections", "All Years", "Year (newest first)"],
# ["security", "Security", "All Years", "Year (newest first)"],
# ["benchmark", "Datasets & Benchmarks", "2024", "Year (newest first)"],
# ["tools", "Tools", "All Years", "Year (newest first)"],
# ],
# inputs=[search_input, section_dropdown, year_dropdown, sort_dropdown],
# outputs=results_html,
# fn=search_papers,
# cache_examples=True,
# )
# Set up search on button click and input changes
search_button.click(
fn=search_papers,
inputs=[search_input, section_dropdown, year_dropdown, sort_dropdown],
outputs=results_html
)
# Also search when dropdown values change
section_dropdown.change(
fn=search_papers,
inputs=[search_input, section_dropdown, year_dropdown, sort_dropdown],
outputs=results_html
)
year_dropdown.change(
fn=search_papers,
inputs=[search_input, section_dropdown, year_dropdown, sort_dropdown],
outputs=results_html
)
sort_dropdown.change(
fn=search_papers,
inputs=[search_input, section_dropdown, year_dropdown, sort_dropdown],
outputs=results_html
)
# Load initial results on page load
demo.load(
fn=lambda: search_papers("", "All Sections", "All Years", "Year (newest first)"),
inputs=None,
outputs=results_html
)
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch() |