Spaces:
Runtime error
Runtime error
File size: 13,255 Bytes
7a73e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import json
import os
import ssl
import traceback
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
from threading import Thread
import extensions.openai.completions as OAIcompletions
import extensions.openai.edits as OAIedits
import extensions.openai.embeddings as OAIembeddings
import extensions.openai.images as OAIimages
import extensions.openai.models as OAImodels
import extensions.openai.moderations as OAImoderations
from extensions.openai.defaults import clamp, default, get_default_req_params
from extensions.openai.errors import (
InvalidRequestError,
OpenAIError,
ServiceUnavailableError
)
from extensions.openai.tokens import token_count, token_decode, token_encode
from extensions.openai.utils import debug_msg
from modules import shared
import cgi
import speech_recognition as sr
from pydub import AudioSegment
params = {
# default params
'port': 5001,
'embedding_device': 'cpu',
'embedding_model': 'all-mpnet-base-v2',
# optional params
'sd_webui_url': '',
'debug': 0
}
class Handler(BaseHTTPRequestHandler):
def send_access_control_headers(self):
self.send_header("Access-Control-Allow-Origin", "*")
self.send_header("Access-Control-Allow-Credentials", "true")
self.send_header(
"Access-Control-Allow-Methods",
"GET,HEAD,OPTIONS,POST,PUT"
)
self.send_header(
"Access-Control-Allow-Headers",
"Origin, Accept, X-Requested-With, Content-Type, "
"Access-Control-Request-Method, Access-Control-Request-Headers, "
"Authorization"
)
def do_OPTIONS(self):
self.send_response(200)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
self.end_headers()
self.wfile.write("OK".encode('utf-8'))
def start_sse(self):
self.send_response(200)
self.send_access_control_headers()
self.send_header('Content-Type', 'text/event-stream')
self.send_header('Cache-Control', 'no-cache')
# self.send_header('Connection', 'keep-alive')
self.end_headers()
def send_sse(self, chunk: dict):
response = 'data: ' + json.dumps(chunk) + '\r\n\r\n'
debug_msg(response[:-4])
self.wfile.write(response.encode('utf-8'))
def end_sse(self):
response = 'data: [DONE]\r\n\r\n'
debug_msg(response[:-4])
self.wfile.write(response.encode('utf-8'))
def return_json(self, ret: dict, code: int = 200, no_debug=False):
self.send_response(code)
self.send_access_control_headers()
self.send_header('Content-Type', 'application/json')
response = json.dumps(ret)
r_utf8 = response.encode('utf-8')
self.send_header('Content-Length', str(len(r_utf8)))
self.end_headers()
self.wfile.write(r_utf8)
if not no_debug:
debug_msg(r_utf8)
def openai_error(self, message, code=500, error_type='APIError', param='', internal_message=''):
error_resp = {
'error': {
'message': message,
'code': code,
'type': error_type,
'param': param,
}
}
if internal_message:
print(error_type, message)
print(internal_message)
# error_resp['internal_message'] = internal_message
self.return_json(error_resp, code)
def openai_error_handler(func):
def wrapper(self):
try:
func(self)
except InvalidRequestError as e:
self.openai_error(e.message, e.code, e.__class__.__name__, e.param, internal_message=e.internal_message)
except OpenAIError as e:
self.openai_error(e.message, e.code, e.__class__.__name__, internal_message=e.internal_message)
except Exception as e:
self.openai_error(repr(e), 500, 'OpenAIError', internal_message=traceback.format_exc())
return wrapper
@openai_error_handler
def do_GET(self):
debug_msg(self.requestline)
debug_msg(self.headers)
if self.path.startswith('/v1/engines') or self.path.startswith('/v1/models'):
is_legacy = 'engines' in self.path
is_list = self.path.split('?')[0].split('#')[0] in ['/v1/engines', '/v1/models']
if is_legacy and not is_list:
model_name = self.path[self.path.find('/v1/engines/') + len('/v1/engines/'):]
resp = OAImodels.load_model(model_name)
elif is_list:
resp = OAImodels.list_models(is_legacy)
else:
model_name = self.path[len('/v1/models/'):]
resp = OAImodels.model_info(model_name)
self.return_json(resp)
elif '/billing/usage' in self.path:
# Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31
self.return_json({"total_usage": 0}, no_debug=True)
else:
self.send_error(404)
@openai_error_handler
def do_POST(self):
if '/v1/audio/transcriptions' in self.path:
r = sr.Recognizer()
# Parse the form data
form = cgi.FieldStorage(
fp=self.rfile,
headers=self.headers,
environ={'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type']}
)
audio_file = form['file'].file
audio_data = AudioSegment.from_file(audio_file)
# Convert AudioSegment to raw data
raw_data = audio_data.raw_data
# Create AudioData object
audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width)
whipser_language = form.getvalue('language', None)
whipser_model = form.getvalue('model', 'tiny') # Use the model from the form data if it exists, otherwise default to tiny
transcription = {"text": ""}
try:
transcription["text"] = r.recognize_whisper(audio_data, language=whipser_language, model=whipser_model)
except sr.UnknownValueError:
print("Whisper could not understand audio")
transcription["text"] = "Whisper could not understand audio UnknownValueError"
except sr.RequestError as e:
print("Could not request results from Whisper", e)
transcription["text"] = "Whisper could not understand audio RequestError"
self.return_json(transcription, no_debug=True)
return
debug_msg(self.requestline)
debug_msg(self.headers)
content_length = self.headers.get('Content-Length')
transfer_encoding = self.headers.get('Transfer-Encoding')
if content_length:
body = json.loads(self.rfile.read(int(content_length)).decode('utf-8'))
elif transfer_encoding == 'chunked':
chunks = []
while True:
chunk_size = int(self.rfile.readline(), 16) # Read the chunk size
if chunk_size == 0:
break # End of chunks
chunks.append(self.rfile.read(chunk_size))
self.rfile.readline() # Consume the trailing newline after each chunk
body = json.loads(b''.join(chunks).decode('utf-8'))
else:
self.send_response(400, "Bad Request: Either Content-Length or Transfer-Encoding header expected.")
self.end_headers()
return
debug_msg(body)
if '/completions' in self.path or '/generate' in self.path:
if not shared.model:
raise ServiceUnavailableError("No model loaded.")
is_legacy = '/generate' in self.path
is_streaming = body.get('stream', False)
if is_streaming:
self.start_sse()
response = []
if 'chat' in self.path:
response = OAIcompletions.stream_chat_completions(body, is_legacy=is_legacy)
else:
response = OAIcompletions.stream_completions(body, is_legacy=is_legacy)
for resp in response:
self.send_sse(resp)
self.end_sse()
else:
response = ''
if 'chat' in self.path:
response = OAIcompletions.chat_completions(body, is_legacy=is_legacy)
else:
response = OAIcompletions.completions(body, is_legacy=is_legacy)
self.return_json(response)
elif '/edits' in self.path:
# deprecated
if not shared.model:
raise ServiceUnavailableError("No model loaded.")
req_params = get_default_req_params()
instruction = body['instruction']
input = body.get('input', '')
temperature = clamp(default(body, 'temperature', req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0
top_p = clamp(default(body, 'top_p', req_params['top_p']), 0.001, 1.0)
response = OAIedits.edits(instruction, input, temperature, top_p)
self.return_json(response)
elif '/images/generations' in self.path:
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')):
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.")
prompt = body['prompt']
size = default(body, 'size', '1024x1024')
response_format = default(body, 'response_format', 'url') # or b64_json
n = default(body, 'n', 1) # ignore the batch limits of max 10
response = OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n)
self.return_json(response, no_debug=True)
elif '/embeddings' in self.path:
encoding_format = body.get('encoding_format', '')
input = body.get('input', body.get('text', ''))
if not input:
raise InvalidRequestError("Missing required argument input", params='input')
if type(input) is str:
input = [input]
response = OAIembeddings.embeddings(input, encoding_format)
self.return_json(response, no_debug=True)
elif '/moderations' in self.path:
input = body['input']
if not input:
raise InvalidRequestError("Missing required argument input", params='input')
response = OAImoderations.moderations(input)
self.return_json(response, no_debug=True)
elif self.path == '/api/v1/token-count':
# NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side.
response = token_count(body['prompt'])
self.return_json(response, no_debug=True)
elif self.path == '/api/v1/token/encode':
# NOT STANDARD. needed to support logit_bias, logprobs and token arrays for native models
encoding_format = body.get('encoding_format', '')
response = token_encode(body['input'], encoding_format)
self.return_json(response, no_debug=True)
elif self.path == '/api/v1/token/decode':
# NOT STANDARD. needed to support logit_bias, logprobs and token arrays for native models
encoding_format = body.get('encoding_format', '')
response = token_decode(body['input'], encoding_format)
self.return_json(response, no_debug=True)
else:
self.send_error(404)
def run_server():
port = int(os.environ.get('OPENEDAI_PORT', params.get('port', 5001)))
server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', port)
server = ThreadingHTTPServer(server_addr, Handler)
ssl_certfile=os.environ.get('OPENEDAI_CERT_PATH', shared.args.ssl_certfile)
ssl_keyfile=os.environ.get('OPENEDAI_KEY_PATH', shared.args.ssl_keyfile)
ssl_verify=True if (ssl_keyfile and ssl_certfile) else False
if ssl_verify:
context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
context.load_cert_chain(ssl_certfile, ssl_keyfile)
server.socket = context.wrap_socket(server.socket, server_side=True)
if shared.args.share:
try:
from flask_cloudflared import _run_cloudflared
public_url = _run_cloudflared(port, port + 1)
print(f'OpenAI compatible API ready at: OPENAI_API_BASE={public_url}/v1')
except ImportError:
print('You should install flask_cloudflared manually')
else:
if ssl_verify:
print(f'OpenAI compatible API ready at: OPENAI_API_BASE=https://{server_addr[0]}:{server_addr[1]}/v1')
else:
print(f'OpenAI compatible API ready at: OPENAI_API_BASE=http://{server_addr[0]}:{server_addr[1]}/v1')
server.serve_forever()
def setup():
Thread(target=run_server, daemon=True).start()
|