File size: 17,888 Bytes
7a73e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from functools import partial
import torch
import transformers
import math
from torch.optim.lr_scheduler import LambdaLR

from peft import (
    PeftModel,
)

RED = "\033[91m"
YELLOW = "\033[93m"
GREEN = "\033[92m"
RESET = "\033[0m"

last_print_label = ''

custom_scheduler_params = {'trigger_loss': 0.0, 'ramp_down_ratio':1.0, 'current_loss': 0.0,'dynamic_scheduler_stop': False, 'calc_ramp_down_at_step': 0, 'calc_num_training_steps': 0}


def custom_scheduler_global_update(current_loss: float):
    custom_scheduler_params.update({'current_loss': current_loss})
  
def custom_scheduler_global_setup(trigger_loss: float, ramp_down_ratio: float):
    custom_scheduler_params.update({'trigger_loss': trigger_loss})
    custom_scheduler_params.update({'ramp_down_ratio': ramp_down_ratio})

    # calculates the total num steps after trigger
    custom_scheduler_params.update({'calc_num_training_steps': 0})
    #calculates steps when the ramp_down trigger occured
    custom_scheduler_params.update({'calc_ramp_down_at_step': 0})
    # triggers scheduler stopping after it reached calc_num_training_steps
    custom_scheduler_params.update({'dynamic_scheduler_stop': False})


# hold constant to the half of epochs then cosine down to 0
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
    
    global last_print_label
    print_label = ''

    half_steps = num_training_steps//2
    
    num_warmup_steps = min(num_warmup_steps,half_steps)

    if current_step < num_warmup_steps:
        print_label = 'Scheduler: Warmup'
    elif current_step < half_steps:
        print_label = 'Scheduler: Hold'
    else:
        print_label = 'Scheduler: Annealing'
    
    if print_label != last_print_label:
        print(print_label)
    
    last_print_label = print_label

    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    
    if current_step < half_steps:
        return 1.0 
    
    progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps))
    num_cycles = 0.5
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))    
 

# raise up in cosine, then fall back in cosine
def _get_fp_cosine_raise_and_fall_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
    
    global last_print_label
    print_label = ''

    half_steps = num_training_steps//2
    
    #num_warmup_steps = min(num_warmup_steps,half_steps)

    if current_step < half_steps:
        print_label = 'Scheduler: Raise'
    else:
        print_label = 'Scheduler: Fall'
    
    if print_label != last_print_label:
        print(print_label)
    
    last_print_label = print_label

    
    # linear
    #    return float(current_step) / float(max(1, num_warmup_steps))
    
    progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps))
    num_cycles = 0.5
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))    
 
# constant to the first epochs then cosine down to 0 over the rest epochs
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
    
    global last_print_label
    print_label = ''
    
    num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps)

    if current_step < num_warmup_steps:
        print_label = 'Scheduler: Warmup'
    elif current_step < num_firstepoch_steps:
        print_label = 'Scheduler: Hold'
    else:
        print_label = 'Scheduler: Annealing'
    
    if print_label != last_print_label:
        print(print_label)
    
    last_print_label = print_label

    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    
    if current_step < num_firstepoch_steps:
        return 1.0 
    
    progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps))
    num_cycles = 0.5
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))    
    
# halve lr each epoch   

def _get_fp_cdrop_rate_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
    
    global last_print_label
    print_label = ''
    
    num_warmup_steps = min(num_warmup_steps, num_firstepoch_steps)

    current_epoch = (current_step // num_firstepoch_steps) + 1
    
    
    if current_step < num_warmup_steps:
        print_label = 'Scheduler: Warmup'
    elif current_step < num_firstepoch_steps:
        print_label = 'Scheduler: Hold'
    else:
        print_label = 'Scheduler: Drop Rate'
    
    if print_label != last_print_label:
        print(print_label)
    
    last_print_label = print_label

    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    
    if current_step < num_firstepoch_steps:
        return 1.0 

    # Compute the learning rate for the annealing phase
    
    learning_rate = 1.0 / float(2 ** (current_epoch - 1))
   
    return learning_rate

# epoch decay: 1/(1 + decay * epoch)

def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
    """
    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """
    
    lr_lambda = partial(
        _get_fp_cosine_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_firstepoch_steps = num_firstepoch_steps,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)

def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
    """
    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """
    
    lr_lambda = partial(
        _get_fp_half_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_firstepoch_steps = num_firstepoch_steps,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)

def custom_raise_fall_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
    """
    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """
    
    lr_lambda = partial(
        _get_fp_cosine_raise_and_fall_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_firstepoch_steps = num_firstepoch_steps,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def neftune_forward(self, input: torch.Tensor):
    """
    Implements the NEFTune forward pass for the model. Note this works only for
    torch.nn.Embedding layers. This method is slightly adapted from the original source code
    that can be found here: https://github.com/neelsjain/NEFTune

    Args:
        input (`torch.Tensor`):
            The input tensor to the model.
        noise_alpha (`float`):
            The noise alpha value to use for the NEFTune forward pass.
    """
    embeddings = torch.nn.functional.embedding(
        input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse
    )

    if self.training:
        # Add noise to the embeddings
        dims = torch.tensor(embeddings.size(1) * embeddings.size(2))
        mag_norm = self.neftune_noise_alpha / torch.sqrt(dims)
        embeddings = embeddings + torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm)

    return embeddings    


class FPNEFtuneTrainer(transformers.Trainer):
    def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs):
        self.neftune_noise_alpha = neftune_noise_alpha
        if self.neftune_noise_alpha > 0.0:
            model = self._activate_neftune(model)
        super().__init__(model = model, *args, **kwargs)

   
    def _activate_neftune(self, model):
        r"""
        Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
        """
        print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}")
        if isinstance(model, transformers.PreTrainedModel):
            embeddings = model.get_input_embeddings()
        elif isinstance(model, PeftModel):
            embeddings = model.base_model.get_input_embeddings()

        embeddings.neftune_noise_alpha = self.neftune_noise_alpha
        old_forward = embeddings.forward

        # This hack seems to be needed to properly use a custom forward pass
        # all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
        bound_method = neftune_forward.__get__(embeddings, embeddings.__class__)
        setattr(embeddings, "forward", bound_method)

        # embeddings.forward = neftune_forward
        embeddings._trl_old_forward = old_forward

        return model
    
    def train(self, *args, **kwargs):
        output = super().train(*args, **kwargs)

        # After training we make sure to retrieve back the original forward pass method
        # for the embedding layer
        if self.neftune_noise_alpha is not None:

            if isinstance(self.model, transformers.PreTrainedModel):
                embeddings = self.model.get_input_embeddings()
            elif isinstance(self.model, PeftModel):
                embeddings = self.model.base_model.get_input_embeddings()

            if hasattr(embeddings, "_trl_old_forward"):
                embeddings.forward = embeddings._trl_old_forward
                del embeddings._trl_old_forward
                del embeddings.neftune_noise_alpha

        return output


class FPSchedulerTrainer(transformers.Trainer):
    def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs):
        self.neftune_noise_alpha = neftune_noise_alpha
        if self.neftune_noise_alpha > 0.0:
            model = self._activate_neftune(model)
        super().__init__(model = model, *args, **kwargs)

   
    def _activate_neftune(self, model):
        r"""
        Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
        """
        print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}")
        if isinstance(model, transformers.PreTrainedModel):
            embeddings = model.get_input_embeddings()
        elif isinstance(model, PeftModel):
            embeddings = model.base_model.get_input_embeddings()

        embeddings.neftune_noise_alpha = self.neftune_noise_alpha
        old_forward = embeddings.forward

        # This hack seems to be needed to properly use a custom forward pass
        # all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
        bound_method = neftune_forward.__get__(embeddings, embeddings.__class__)
        setattr(embeddings, "forward", bound_method)

        # embeddings.forward = neftune_forward
        embeddings._trl_old_forward = old_forward

        return model
    
    def train(self, *args, **kwargs):
        output = super().train(*args, **kwargs)

        # After training we make sure to retrieve back the original forward pass method
        # for the embedding layer
        if self.neftune_noise_alpha is not None:

            if isinstance(self.model, transformers.PreTrainedModel):
                embeddings = self.model.get_input_embeddings()
            elif isinstance(self.model, PeftModel):
                embeddings = self.model.base_model.get_input_embeddings()

            if hasattr(embeddings, "_trl_old_forward"):
                embeddings.forward = embeddings._trl_old_forward
                del embeddings._trl_old_forward
                del embeddings.neftune_noise_alpha

        return output


    def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
        #Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument.
        
        num_train_epochs = self.args.num_train_epochs
        num_warmup_steps=self.args.get_warmup_steps(num_training_steps)
        num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs)
        num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps 
        num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps
        num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps

        custom_scheduler_params.update({'dynamic_scheduler_stop': False})
 
        print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps")
        if self.args.lr_scheduler_type == 'cosine':
            
            num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc)

            if num_warmup_acc>num_firstepoch_steps_acc:
                print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m")
                print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
            else:
                print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")

            self.lr_scheduler = custom_cosine_scheduler_with_warmup(
                    optimizer=self.optimizer if optimizer is None else optimizer,
                    num_warmup_steps=num_warmup_steps,
                    num_training_steps=num_training_steps, 
                    num_firstepoch_steps = num_firstepoch_steps,
                )
            self._created_lr_scheduler = True
            return self.lr_scheduler
        elif self.args.lr_scheduler_type == 'constant':
           
            half_step_acc = num_training_steps_acc//2
            num_warmup_acc_min = min(num_warmup_acc, half_step_acc)

            if num_warmup_acc>half_step_acc:
                print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m")
                print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}")
            else:
                print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}")

            self.lr_scheduler = custom_half_scheduler_with_warmup(
                    optimizer=self.optimizer if optimizer is None else optimizer,
                    num_warmup_steps=num_warmup_steps,
                    num_training_steps=num_training_steps, 
                    num_firstepoch_steps = num_firstepoch_steps,
                )
            self._created_lr_scheduler = True
            return self.lr_scheduler
        elif self.args.lr_scheduler_type == 'constant_with_warmup':
           
            half_step_acc = num_training_steps_acc//2
            
            if num_warmup_steps>0:
                print(f"Warmup doesn't apply to this scheduler [Raise-Fall]")

            print (f"Scheduler Raise: 0-{half_step_acc}, Fall {half_step_acc}-{num_training_steps_acc}")

            self.lr_scheduler = custom_raise_fall_scheduler_with_warmup(
                    optimizer=self.optimizer if optimizer is None else optimizer,
                    num_warmup_steps=num_warmup_steps,
                    num_training_steps=num_training_steps, 
                    num_firstepoch_steps = num_firstepoch_steps,
                )
            self._created_lr_scheduler = True
            return self.lr_scheduler        
        else:
            return  super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)