Spaces:
Runtime error
Runtime error
File size: 17,888 Bytes
7a73e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
from functools import partial
import torch
import transformers
import math
from torch.optim.lr_scheduler import LambdaLR
from peft import (
PeftModel,
)
RED = "\033[91m"
YELLOW = "\033[93m"
GREEN = "\033[92m"
RESET = "\033[0m"
last_print_label = ''
custom_scheduler_params = {'trigger_loss': 0.0, 'ramp_down_ratio':1.0, 'current_loss': 0.0,'dynamic_scheduler_stop': False, 'calc_ramp_down_at_step': 0, 'calc_num_training_steps': 0}
def custom_scheduler_global_update(current_loss: float):
custom_scheduler_params.update({'current_loss': current_loss})
def custom_scheduler_global_setup(trigger_loss: float, ramp_down_ratio: float):
custom_scheduler_params.update({'trigger_loss': trigger_loss})
custom_scheduler_params.update({'ramp_down_ratio': ramp_down_ratio})
# calculates the total num steps after trigger
custom_scheduler_params.update({'calc_num_training_steps': 0})
#calculates steps when the ramp_down trigger occured
custom_scheduler_params.update({'calc_ramp_down_at_step': 0})
# triggers scheduler stopping after it reached calc_num_training_steps
custom_scheduler_params.update({'dynamic_scheduler_stop': False})
# hold constant to the half of epochs then cosine down to 0
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
half_steps = num_training_steps//2
num_warmup_steps = min(num_warmup_steps,half_steps)
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < half_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Annealing'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < half_steps:
return 1.0
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
# raise up in cosine, then fall back in cosine
def _get_fp_cosine_raise_and_fall_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
half_steps = num_training_steps//2
#num_warmup_steps = min(num_warmup_steps,half_steps)
if current_step < half_steps:
print_label = 'Scheduler: Raise'
else:
print_label = 'Scheduler: Fall'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
# linear
# return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
# constant to the first epochs then cosine down to 0 over the rest epochs
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps)
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < num_firstepoch_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Annealing'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_firstepoch_steps:
return 1.0
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
# halve lr each epoch
def _get_fp_cdrop_rate_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
num_warmup_steps = min(num_warmup_steps, num_firstepoch_steps)
current_epoch = (current_step // num_firstepoch_steps) + 1
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < num_firstepoch_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Drop Rate'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_firstepoch_steps:
return 1.0
# Compute the learning rate for the annealing phase
learning_rate = 1.0 / float(2 ** (current_epoch - 1))
return learning_rate
# epoch decay: 1/(1 + decay * epoch)
def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_half_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def custom_raise_fall_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_cosine_raise_and_fall_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def neftune_forward(self, input: torch.Tensor):
"""
Implements the NEFTune forward pass for the model. Note this works only for
torch.nn.Embedding layers. This method is slightly adapted from the original source code
that can be found here: https://github.com/neelsjain/NEFTune
Args:
input (`torch.Tensor`):
The input tensor to the model.
noise_alpha (`float`):
The noise alpha value to use for the NEFTune forward pass.
"""
embeddings = torch.nn.functional.embedding(
input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse
)
if self.training:
# Add noise to the embeddings
dims = torch.tensor(embeddings.size(1) * embeddings.size(2))
mag_norm = self.neftune_noise_alpha / torch.sqrt(dims)
embeddings = embeddings + torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm)
return embeddings
class FPNEFtuneTrainer(transformers.Trainer):
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs):
self.neftune_noise_alpha = neftune_noise_alpha
if self.neftune_noise_alpha > 0.0:
model = self._activate_neftune(model)
super().__init__(model = model, *args, **kwargs)
def _activate_neftune(self, model):
r"""
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
"""
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}")
if isinstance(model, transformers.PreTrainedModel):
embeddings = model.get_input_embeddings()
elif isinstance(model, PeftModel):
embeddings = model.base_model.get_input_embeddings()
embeddings.neftune_noise_alpha = self.neftune_noise_alpha
old_forward = embeddings.forward
# This hack seems to be needed to properly use a custom forward pass
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__)
setattr(embeddings, "forward", bound_method)
# embeddings.forward = neftune_forward
embeddings._trl_old_forward = old_forward
return model
def train(self, *args, **kwargs):
output = super().train(*args, **kwargs)
# After training we make sure to retrieve back the original forward pass method
# for the embedding layer
if self.neftune_noise_alpha is not None:
if isinstance(self.model, transformers.PreTrainedModel):
embeddings = self.model.get_input_embeddings()
elif isinstance(self.model, PeftModel):
embeddings = self.model.base_model.get_input_embeddings()
if hasattr(embeddings, "_trl_old_forward"):
embeddings.forward = embeddings._trl_old_forward
del embeddings._trl_old_forward
del embeddings.neftune_noise_alpha
return output
class FPSchedulerTrainer(transformers.Trainer):
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs):
self.neftune_noise_alpha = neftune_noise_alpha
if self.neftune_noise_alpha > 0.0:
model = self._activate_neftune(model)
super().__init__(model = model, *args, **kwargs)
def _activate_neftune(self, model):
r"""
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
"""
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}")
if isinstance(model, transformers.PreTrainedModel):
embeddings = model.get_input_embeddings()
elif isinstance(model, PeftModel):
embeddings = model.base_model.get_input_embeddings()
embeddings.neftune_noise_alpha = self.neftune_noise_alpha
old_forward = embeddings.forward
# This hack seems to be needed to properly use a custom forward pass
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__)
setattr(embeddings, "forward", bound_method)
# embeddings.forward = neftune_forward
embeddings._trl_old_forward = old_forward
return model
def train(self, *args, **kwargs):
output = super().train(*args, **kwargs)
# After training we make sure to retrieve back the original forward pass method
# for the embedding layer
if self.neftune_noise_alpha is not None:
if isinstance(self.model, transformers.PreTrainedModel):
embeddings = self.model.get_input_embeddings()
elif isinstance(self.model, PeftModel):
embeddings = self.model.base_model.get_input_embeddings()
if hasattr(embeddings, "_trl_old_forward"):
embeddings.forward = embeddings._trl_old_forward
del embeddings._trl_old_forward
del embeddings.neftune_noise_alpha
return output
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
#Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument.
num_train_epochs = self.args.num_train_epochs
num_warmup_steps=self.args.get_warmup_steps(num_training_steps)
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs)
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps
custom_scheduler_params.update({'dynamic_scheduler_stop': False})
print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps")
if self.args.lr_scheduler_type == 'cosine':
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc)
if num_warmup_acc>num_firstepoch_steps_acc:
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m")
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
else:
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
self.lr_scheduler = custom_cosine_scheduler_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
elif self.args.lr_scheduler_type == 'constant':
half_step_acc = num_training_steps_acc//2
num_warmup_acc_min = min(num_warmup_acc, half_step_acc)
if num_warmup_acc>half_step_acc:
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m")
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}")
else:
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}")
self.lr_scheduler = custom_half_scheduler_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
elif self.args.lr_scheduler_type == 'constant_with_warmup':
half_step_acc = num_training_steps_acc//2
if num_warmup_steps>0:
print(f"Warmup doesn't apply to this scheduler [Raise-Fall]")
print (f"Scheduler Raise: 0-{half_step_acc}, Fall {half_step_acc}-{num_training_steps_acc}")
self.lr_scheduler = custom_raise_fall_scheduler_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
else:
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) |