Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, Body | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from typing import List, Dict, Union | |
import base64 | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
app = FastAPI() | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto") | |
min_pixels = 256 * 28 * 28 | |
max_pixels = 1280 * 28 * 28 | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) | |
def process_image(image_data: str) -> Image.Image: | |
if image_data.startswith("http://") or image_data.startswith("https://"): | |
response = requests.get(image_data) | |
response.raise_for_status() | |
img = Image.open(BytesIO(response.content)) | |
elif image_data.startswith("data:image"): | |
img_data = base64.b64decode(image_data.split(",")[1]) | |
img = Image.open(BytesIO(img_data)) | |
else: | |
img = Image.open(image_data) | |
return img | |
async def predict(messages: List[Dict[str, Union[str, List[Dict[str, str]]]]] = Body(...)): | |
texts = [] | |
image_inputs = [] | |
video_inputs = [] | |
for message in messages: | |
content = message.get("content") | |
if isinstance(content, str): | |
texts.append(processor.apply_chat_template(content, tokenize=False, add_generation_prompt=True)) | |
elif isinstance(content, list): | |
for item in content: | |
if isinstance(item, dict) and "type" in item: | |
if item["type"] == "text": | |
texts.append(processor.apply_chat_template(item["text"], tokenize=False, add_generation_prompt=True)) | |
elif item["type"] == "image": | |
image = process_image(item["image"]) | |
image_inputs.append(image) | |
else: | |
raise ValueError(f"Formato inválido para o item: {item}") | |
else: | |
raise ValueError(f"Formato inválido para o conteúdo: {content}") | |
if not image_inputs: | |
raise ValueError("Nenhuma imagem fornecida para processamento.") | |
print(f"Imagens processadas: {image_inputs}") | |
inputs = processor( | |
text=texts, | |
images=[image_inputs], # Passa as imagens como uma lista de listas | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
inputs = inputs.to("cpu") | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_texts = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return {"response": output_texts} |