Spaces:
Runtime error
Runtime error
""" | |
import gradio as gr | |
def mental_chat(message, history): | |
return givetext(patienttext,newmodel,newtokenizer) | |
demo = gr.ChatInterface(mental_chat) | |
demo.launch() | |
""" | |
#pip install huggingface_hub | |
#python -c "from huggingface_hub.hf_api import HfFolder; HfFolder.save_token('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')" | |
#!pip install accelerate | |
#!pip install -i | |
import gradio as gr | |
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# ##### ##### ##### ##### ##### | |
peft_model_id = "charansr/llama2-7b-chat-hf-therapist" | |
config = PeftConfig.from_pretrained(peft_model_id, | |
use_auth_token="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", load_in_4bit=True) | |
newmodel = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_4bit=True, | |
use_auth_token="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").to("cpu") | |
newtokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, | |
use_auth_token="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", load_in_4bit=True).to("cpu") | |
# Load the Lora model | |
newmodel = PeftModel.from_pretrained(newmodel, peft_model_id, | |
use_auth_token="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", load_in_4bit=True).to("cpu") | |
def givetext(input_text,lmodel,ltokenizer): | |
try: | |
eval_prompt_pt1 = "\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction: Act like a therapist and respond\n\n### Input: " | |
eval_prompt_pt2="\n\n\n### Response:\n" | |
eval_prompt=eval_prompt_pt1+input_text+eval_prompt_pt2 | |
print(eval_prompt,"\n\n") | |
print("BEFORE PROCESSING MODEL INPUT") | |
model_input = ltokenizer(eval_prompt, return_tensors="pt").to("cpu") | |
print(" BEFORE EVAL LMODEL") | |
lmodel.eval() | |
print("BEFORE DOING TORCH.NO_GRAD()") | |
with torch.no_grad(): | |
#print("BEFORE RETURNING") | |
#print("BEFORE ATTEMPTING TO MOVE LMODEL TO CPU") | |
#lmodel = lmodel.to("cpu") | |
#print("BEFORE ATTEMPTING .cpu()") | |
#lmodel.cpu() | |
print("BEFORE GENERATING LMODEL") | |
lmodel_generated = lmodel.generate(**model_input, max_new_tokens=1000)[0] # device and device_map (for "cpu") are not valid arguments | |
print("BEFORE GENERATING LTOKENIZER") | |
return (ltokenizer.decode(lmodel_generated, skip_special_tokens=True)) | |
#return (ltokenizer.decode(lmodel.generate(**model_input, max_new_tokens=1000)[0], skip_special_tokens=True)) | |
#return (ltokenizer.decode(lmodel.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True)) | |
except Exception as error: | |
print("Exception {error}".format(error = error)) | |
#txt1 = "My name is {fname}, I'm {age}".format(fname = "John", age = 36) | |
def mental_chat(message, history): | |
print("BEFORE CALLING GIVETEXT") | |
return givetext(message,newmodel,newtokenizer) | |
demo = gr.ChatInterface(mental_chat) | |
demo.launch() # | |
""" | |
import gradio as gr | |
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = "charansr/llama2-7b-chat-hf-therapist" | |
# Load the Lora model | |
newmodel = PeftModel.from_pretrained(peft_model_id, use_auth_token="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", device_map="cpu", | |
model_id=peft_model_id) | |
newtokenizer = AutoTokenizer.from_pretrained(peft_model_id, use_auth_token="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") | |
def givetext(input_text, lmodel, ltokenizer): | |
eval_prompt_pt1 = \nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction: Act like a therapist and respond\n\n### Input: " | |
eval_prompt_pt2 = "\n\n\n### Response:\n" | |
eval_prompt = eval_prompt_pt1 + input_text + eval_prompt_pt2 | |
print(eval_prompt, "\n\n") | |
model_input = ltokenizer(eval_prompt, return_tensors="pt").to("cuda") | |
lmodel.eval() | |
with torch.no_grad(): | |
return ltokenizer.decode(lmodel.generate(**model_input, max_new_tokens=1000)[0], skip_special_tokens=True) | |
def mental_chat(message, history): | |
return givetext(message, newmodel, newtokenizer) | |
demo = gr.ChatInterface(mental_chat) | |
demo.launch() | |
""" |