File size: 9,508 Bytes
55f9b9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Natural Language Toolkit: NLTK's very own tokenizer, slightly modified.
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Liling Tan
# Tom Aarsen <> (modifications)
# URL: <https://www.nltk.org>
import re
import warnings
from typing import Iterator, List, Tuple
def align_tokens(tokens, sentence):
"""
This module attempt to find the offsets of the tokens in *s*, as a sequence
of ``(start, end)`` tuples, given the tokens and also the source string.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> from nltk.tokenize.util import align_tokens
>>> s = str("The plane, bound for St Petersburg, crashed in Egypt's "
... "Sinai desert just 23 minutes after take-off from Sharm el-Sheikh "
... "on Saturday.")
>>> tokens = TreebankWordTokenizer().tokenize(s)
>>> expected = [(0, 3), (4, 9), (9, 10), (11, 16), (17, 20), (21, 23),
... (24, 34), (34, 35), (36, 43), (44, 46), (47, 52), (52, 54),
... (55, 60), (61, 67), (68, 72), (73, 75), (76, 83), (84, 89),
... (90, 98), (99, 103), (104, 109), (110, 119), (120, 122),
... (123, 131), (131, 132)]
>>> output = list(align_tokens(tokens, s))
>>> len(tokens) == len(expected) == len(output) # Check that length of tokens and tuples are the same.
True
>>> expected == list(align_tokens(tokens, s)) # Check that the output is as expected.
True
>>> tokens == [s[start:end] for start, end in output] # Check that the slices of the string corresponds to the tokens.
True
:param tokens: The list of strings that are the result of tokenization
:type tokens: list(str)
:param sentence: The original string
:type sentence: str
:rtype: list(tuple(int,int))
"""
point = 0
offsets = []
for token in tokens:
try:
start = sentence.index(token, point)
except ValueError as e:
raise ValueError(f'substring "{token}" not found in "{sentence}"') from e
point = start + len(token)
offsets.append((start, point))
return offsets
class NLTKWordTokenizer:
"""
The NLTK tokenizer that has improved upon the TreebankWordTokenizer.
This is the method that is invoked by ``word_tokenize()``. It assumes that the
text has already been segmented into sentences, e.g. using ``sent_tokenize()``.
The tokenizer is "destructive" such that the regexes applied will munge the
input string to a state beyond re-construction. It is possible to apply
`TreebankWordDetokenizer.detokenize` to the tokenized outputs of
`NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to
revert to the original string.
"""
# Starting quotes.
STARTING_QUOTES = [
(re.compile("([Β«βββ]|[`]+)", re.U), r" \1 "),
(re.compile(r"^\""), r' " '),
(re.compile(r"(``)"), r" \1 "),
(re.compile(r"([ \(\[{<])(\"|\'{2})"), r'\1 " '),
# (re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"),
]
# Ending quotes.
ENDING_QUOTES = [
(re.compile("([Β»ββ])", re.U), r" \1 "),
(re.compile(r"''"), " '' "),
(re.compile(r'"'), ' " '),
(re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
# (re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
]
# For improvements for starting/closing quotes from TreebankWordTokenizer,
# see discussion on https://github.com/nltk/nltk/pull/1437
# Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on
# - chervon quotes u'\xab' and u'\xbb' .
# - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d'
# See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608
# Also, behavior of splitting on clitics now follows Stanford CoreNLP
# - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b
# Punctuation.
PUNCTUATION = [
(re.compile(r'([^\.])(\.)([\]\)}>"\'' "Β»ββ " r"]*)\s*$", re.U), r"\1 \2 \3 "),
(re.compile(r"([:,])([^\d])"), r" \1 \2"),
(re.compile(r"([:,])$"), r" \1 "),
(
re.compile(r"\.{2,}", re.U),
r" \g<0> ",
), # See https://github.com/nltk/nltk/pull/2322
(re.compile(r"[;@#$%&]"), r" \g<0> "),
(
re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
r"\1 \2\3 ",
), # Handles the final period.
(re.compile(r"[?!]"), r" \g<0> "),
(re.compile(r"([^'])' "), r"\1 ' "),
(
re.compile(r"[*]", re.U),
r" \g<0> ",
), # See https://github.com/nltk/nltk/pull/2322
]
# Pads parentheses
PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")
# Optionally: Convert parentheses, brackets and converts them to PTB symbols.
# CONVERT_PARENTHESES = [
# (re.compile(r"\("), "-LRB-"),
# (re.compile(r"\)"), "-RRB-"),
# (re.compile(r"\["), "-LSB-"),
# (re.compile(r"\]"), "-RSB-"),
# (re.compile(r"\{"), "-LCB-"),
# (re.compile(r"\}"), "-RCB-"),
# ]
DOUBLE_DASHES = (re.compile(r"--"), r" -- ")
# List of contractions adapted from Robert MacIntyre's tokenizer.
# _contractions = MacIntyreContractions()
# CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
# CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))
def tokenize(
self, text: str
) -> List[str]:
r"""Return a tokenized copy of `text`.
>>> from nltk.tokenize import NLTKWordTokenizer
>>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
>>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
:param text: A string with a sentence or sentences.
:type text: str
:param convert_parentheses: if True, replace parentheses to PTB symbols,
e.g. `(` to `-LRB-`. Defaults to False.
:type convert_parentheses: bool, optional
:param return_str: If True, return tokens as space-separated string,
defaults to False.
:type return_str: bool, optional
:return: List of tokens from `text`.
:rtype: List[str]
"""
for regexp, substitution in self.STARTING_QUOTES:
text = regexp.sub(substitution, text)
for regexp, substitution in self.PUNCTUATION:
text = regexp.sub(substitution, text)
# Handles parentheses.
regexp, substitution = self.PARENS_BRACKETS
text = regexp.sub(substitution, text)
# Handles double dash.
regexp, substitution = self.DOUBLE_DASHES
text = regexp.sub(substitution, text)
# add extra space to make things easier
text = " " + text + " "
for regexp, substitution in self.ENDING_QUOTES:
text = regexp.sub(substitution, text)
return text.split()
def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
r"""
Returns the spans of the tokens in ``text``.
Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.
>>> from nltk.tokenize import NLTKWordTokenizer
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
>>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
>>> list(NLTKWordTokenizer().span_tokenize(s)) == expected
True
>>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
>>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected
True
:param text: A string with a sentence or sentences.
:type text: str
:yield: Tuple[int, int]
"""
raw_tokens = self.tokenize(text)
# Convert converted quotes back to original double quotes
# Do this only if original text contains double quote(s) or double
# single-quotes (because '' might be transformed to `` if it is
# treated as starting quotes).
# if ('"' in text) or ("''" in text):
# # Find double quotes and converted quotes
# matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]
# # Replace converted quotes back to double quotes
# tokens = [
# matched.pop(0) if tok in ['"', "``", "''"] else tok
# for tok in raw_tokens
# ]
# else:
tokens = raw_tokens
yield from align_tokens(tokens, text)
|