File size: 2,046 Bytes
999224a
ecf35de
 
0a61252
999224a
 
 
0a61252
 
999224a
 
 
0a61252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999224a
 
 
0a61252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999224a
 
 
 
 
 
0a61252
999224a
 
 
 
0a61252
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from openai import OpenAI
import streamlit as st

st.title("HiddenLayer Chat")

client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])

col1, col2 = st.columns(2)

if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo"

if "messages_col_1" not in st.session_state:
    st.session_state.messages_col_1 = []

if "messages_col_2" not in st.session_state:
    st.session_state.messages_col_2 = []

for message in st.session_state.messages_col_1:
    with col1:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

for message in st.session_state.messages_col_2:
    with col2:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])


if prompt := st.chat_input("What is up?"):
    st.session_state.messages_col_1.append({"role": "user", "content": prompt})
    st.session_state.messages_col_2.append({"role": "user", "content": prompt})
    with col1:
        with st.chat_message("user"):
            st.markdown(prompt)

    with col2:
        with st.chat_message("user"):
            st.markdown(prompt)


    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages_col_1
            ],
            stream=True,
        )
        response = st.write_stream(stream)
    st.session_state.messages_col_1.append({"role": "assistant", "content": response})

    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages_col_2
            ],
            stream=True,
        )
        response = st.write_stream(stream)
    st.session_state.messages_col_2.append({"role": "assistant", "content": response})