lombardata's picture
Update app.py
6cbf3f8 verified
raw
history blame
4.66 kB
import torch
from transformers import AutoImageProcessor, Dinov2ForImageClassification, Dinov2Config, Dinov2Model
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
import json
import torch.nn as nn
import numpy as np
# DEFINE MODEL NAME
model_name = "DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze"
checkpoint_name = "lombardata/" + model_name
# Load the model configuration and create the model
config_path = hf_hub_download(repo_id=checkpoint_name, filename="config.json")
with open(config_path, 'r') as config_file:
config = json.load(config_file)
id2label = config["id2label"]
label2id = config["label2id"]
image_size = config["image_size"]
num_labels = len(id2label)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# IMPORT CLASSIFICATION MODEL
def create_head(num_features , number_classes ,dropout_prob=0.5 ,activation_func =nn.ReLU):
features_lst = [num_features , num_features//2 , num_features//4]
layers = []
for in_f ,out_f in zip(features_lst[:-1] , features_lst[1:]):
layers.append(nn.Linear(in_f , out_f))
layers.append(activation_func())
layers.append(nn.BatchNorm1d(out_f))
if dropout_prob !=0 : layers.append(nn.Dropout(dropout_prob))
layers.append(nn.Linear(features_lst[-1] , number_classes))
return nn.Sequential(*layers)
class NewheadDinov2ForImageClassification(Dinov2ForImageClassification):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
# Classifier head
self.classifier = create_head(config.hidden_size * 2, config.num_labels)
model = NewheadDinov2ForImageClassification.from_pretrained(checkpoint_name)
model.to(device)
def sigmoid(_outputs):
return 1.0 / (1.0 + np.exp(-_outputs))
def download_thresholds(repo_id, filename):
threshold_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(threshold_path, 'r') as threshold_file:
thresholds = json.load(threshold_file)
return thresholds
def predict(image, slider_threshold=0.5, fixed_thresholds=None):
# Preprocess the image
processor = AutoImageProcessor.from_pretrained(checkpoint_name)
inputs = processor(images=image, return_tensors="pt").to(device)
# Get model predictions
with torch.no_grad():
model_outputs = model(**inputs)
logits = model_outputs.logits[0]
probabilities = torch.sigmoid(logits).cpu().numpy() # Convert to probabilities
# Create a dictionary of label scores based on the slider threshold
slider_results = {id2label[str(i)]: float(prob) for i, prob in enumerate(probabilities) if prob > slider_threshold}
# If fixed thresholds are provided, create a dictionary of label scores based on the fixed thresholds
fixed_threshold_results = None
if fixed_thresholds is not None:
fixed_threshold_results = {id2label[str(i)]: float(prob) for i, prob in enumerate(probabilities) if prob > fixed_thresholds[id2label[str(i)]]}
return slider_results, fixed_threshold_results
def predict_wrapper(image, slider_threshold=0.5):
# Download thresholds from the model repository
thresholds = download_thresholds(checkpoint_name, "threshold.json")
# Get predictions from the predict function using both the slider and fixed thresholds
slider_results, fixed_threshold_results = predict(image, slider_threshold, thresholds)
# Return both sets of predictions for Gradio outputs
return slider_results, fixed_threshold_results
# Define style
title = "Victor - DinoVd'eau image classification"
model_link = "https://huggingface.co/" + checkpoint_name
description = f"This application showcases the capability of artificial intelligence-based systems to identify objects within underwater images. To utilize it, you can either upload your own image or select one of the provided examples for analysis.\nFor predictions, we use this [open-source model]({model_link})"
iface = gr.Interface(
fn=predict_wrapper,
inputs=[gr.components.Image(type="pil"), gr.components.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Threshold")],
outputs=[
gr.components.Label(label="Slider Threshold Predictions"),
gr.components.Label(label="Fixed Thresholds Predictions")
],
title=title,
description=description,
examples=[["session_GOPR0106.JPG"],
["session_2021_08_30_Mayotte_10_image_00066.jpg"],
["session_2018_11_17_kite_Le_Morne_Manawa_G0065777.JPG"],
["session_2023_06_28_caplahoussaye_plancha_body_v1B_00_GP1_3_1327.jpeg"]]).launch()