Spaces:
Sleeping
Sleeping
File size: 3,781 Bytes
2f812c4 c19d193 6aae614 59c1b1a 8fe992b a7dc99b 156c068 a7dc99b 9b5b26a c4f01da 9b5b26a 05d46d9 a7dc99b 156c068 c4f01da 05d46d9 c4f01da 05d46d9 156c068 a7dc99b c4f01da a7dc99b c4f01da a7dc99b 9b5b26a 156c068 9b5b26a 156c068 9b5b26a 156c068 05d46d9 156c068 c4f01da 8c01ffb 156c068 8c01ffb 6aae614 59c1b1a ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 2f812c4 e70e03d 2f812c4 9b5b26a 8c01ffb 8fe992b c4f01da 59c1b1a c4f01da 8c01ffb 8885992 8c01ffb 2f812c4 156c068 c4f01da 991fef8 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from smolagents import CodeAgent,ToolCallingAgent,HfApiModel,load_tool,tool
import yaml
from tools.final_answer import FinalAnswerTool
from tools.user_input import UserInputTool
from kaggle.api.kaggle_api_extended import KaggleApi
import os
from Gradio_UI import GradioUI
os.environ['KAGGLE_USERNAME'] = ''
os.environ['KAGGLE_KEY'] = ''
def auth_kaggle() -> KaggleApi:
"""Authenticate Kaggle and return the API object.
"""
api = KaggleApi()
try:
api.authenticate()
except Exception as e:
return f"Error authenticating with Kaggle: {str(e)}"
return api
@tool
def search_kaggle_datasets(search_term:str,
max_results:int = 10
) -> list[dict[str]]:
"""Search for datasets on Kaggle based on a search term and return list of datasets metadata.
Args:
search_term: The term to search for.
max_results: Maximum number of results to return.
"""
kaggle_api = auth_kaggle()
# Search for datasets
datasets = kaggle_api.dataset_list(search=search_term)
# Limit the number of results
datasets = datasets[:max_results]
# Extract relevant information
results = []
for dataset in datasets:
dataset_info = kaggle_api.dataset_view(dataset)
results.append({
'title': dataset_info['title'],
'url': f"https://www.kaggle.com/{dataset_info['ref']}",
'size': dataset_info['size'],
'files': dataset_info['files'],
'last_updated': dataset_info['lastUpdated']
})
return results
@tool
def download_kaggle_dataset(
dataset_ref: str,
download_path: str,
unzip: bool = True
) -> str:
"""Download a dataset from Kaggle.
Args:
dataset_ref: The reference of the dataset (e.g., "username/dataset-name").
download_path: The directory where the dataset will be downloaded.
unzip: Whether to unzip the dataset after downloading. Default is True.
"""
# Ensure the download path exists
os.makedirs(download_path, exist_ok=True)
kaggle_api = auth_kaggle()
# Download the dataset
kaggle_api.dataset_download_files(dataset_ref, path=download_path, unzip=unzip)
return f"Dataset '{dataset_ref}' downloaded to '{download_path}'."
final_answer = FinalAnswerTool()
user_input = UserInputTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
conversional_agent = ToolCallingAgent(
model=model,
tools=[user_input],
max_steps=6,
name='ask_question',
description='Ask a question to the user and get the answer',
)
agent = CodeAgent(
model=model,
tools=[final_answer,
search_kaggle_datasets,
user_input,
download_kaggle_dataset,
image_generation_tool],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=2,
name=None,
description=None,
managed_agents=[conversional_agent],
prompt_templates=prompt_templates,
additional_authorized_imports=['pandas',
'matplotlib',
'seaborn'],
add_base_tools=True,
)
GradioUI(agent).launch() |