Spaces:
Sleeping
Sleeping
File size: 5,691 Bytes
a7dc99b 9b5b26a c19d193 6aae614 156c068 8fe992b a7dc99b 156c068 a7dc99b 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a a7dc99b 156c068 a7dc99b 156c068 a7dc99b 9b5b26a 156c068 9b5b26a 156c068 9b5b26a 156c068 9b5b26a 156c068 9b5b26a 156c068 8c01ffb 156c068 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 156c068 8c01ffb 156c068 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from smolagents import CodeAgent,DuckDuckGoSearchTool,HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
# from typing import Optional
from kaggle.api.kaggle_api_extended import KaggleApi
import os
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def search_kaggle_datasets(search_term:str, kaggle_username:str = None, kaggle_key:str = None, max_results:int = 10)-> list[dict[str]]:
"""Search for datasets on Kaggle based on a search term.
Args:
search_term: The term to search for.
kaggle_username: Your Kaggle username.
kaggle_key: Your Kaggle API key.
max_results: Maximum number of results to return.
"""
# Initialize the Kaggle API
api = KaggleApi()
# Authenticate using provided credentials
if kaggle_username and kaggle_key:
# Create a temporary kaggle.json file
kaggle_json_content = f'{{"username":"{kaggle_username}","key":"{kaggle_key}"}}'
kaggle_json_path = os.path.expanduser("~/.kaggle/kaggle.json")
os.makedirs(os.path.dirname(kaggle_json_path), exist_ok=True)
with open(kaggle_json_path, "w") as f:
f.write(kaggle_json_content)
os.chmod(kaggle_json_path, 0o600) # Set permissions to read/write for the owner only
else:
# Use the default kaggle.json file if no credentials are provided
return 'Error in searching Kaggle datasets: No username or key provided.'
try:
api.authenticate()
except Exception as e:
return f"Error authenticating with Kaggle: {str(e)}"
# Search for datasets
datasets = api.dataset_list(search=search_term)
# Limit the number of results
datasets = datasets[:max_results]
# Extract relevant information
results = []
for dataset in datasets:
dataset_info = api.dataset_view(dataset)
results.append({
'title': dataset_info['title'],
'url': f"https://www.kaggle.com/{dataset_info['ref']}",
'size': dataset_info['size'],
'files': dataset_info['files'],
'last_updated': dataset_info['lastUpdated']
})
# Clean up the temporary kaggle.json file if it was created
if kaggle_username and kaggle_key:
os.remove(kaggle_json_path)
return results
@tool
def download_kaggle_dataset(
dataset_ref: str,
download_path: str,
kaggle_username: str = None,
kaggle_key: str = None,
unzip: bool = True
) -> str:
"""Download a dataset from Kaggle.
Args:
dataset_ref: The reference of the dataset (e.g., "username/dataset-name").
download_path: The directory where the dataset will be downloaded.
kaggle_username: Your Kaggle username (from kaggle.json).
kaggle_key: Your Kaggle API key (from kaggle.json).
unzip: Whether to unzip the dataset after downloading. Default is True.
"""
# Initialize the Kaggle API
api = KaggleApi()
# Authenticate using provided credentials
if kaggle_username and kaggle_key:
# Create a temporary kaggle.json file
kaggle_json_content = f'{{"username":"{kaggle_username}","key":"{kaggle_key}"}}'
kaggle_json_path = os.path.expanduser("~/.kaggle/kaggle.json")
os.makedirs(os.path.dirname(kaggle_json_path), exist_ok=True)
with open(kaggle_json_path, "w") as f:
f.write(kaggle_json_content)
os.chmod(kaggle_json_path, 0o600) # Set permissions to read/write for the owner only
else:
# Use the default kaggle.json file if no credentials are provided
pass
try:
api.authenticate()
except Exception as e:
return f"Error authenticating with Kaggle: {str(e)}"
# Ensure the download path exists
os.makedirs(download_path, exist_ok=True)
# Download the dataset
api.dataset_download_files(dataset_ref, path=download_path, unzip=unzip)
# Clean up the temporary kaggle.json file if it was created
if kaggle_username and kaggle_key:
os.remove(kaggle_json_path)
return f"Dataset '{dataset_ref}' downloaded to '{download_path}'."
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, search_kaggle_datasets, download_kaggle_dataset], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates,
additional_authorized_imports=['pandas', 'matplotlib', 'seaborn'],
)
GradioUI(agent).launch() |