File size: 9,189 Bytes
d6bc972
 
9cb3d9b
595840a
9cb3d9b
efcc6b0
 
9cb3d9b
efcc6b0
 
d6bc972
 
 
 
 
efcc6b0
d6bc972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
 
 
 
d6bc972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
d6bc972
 
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
 
 
 
d6bc972
 
 
 
 
 
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
d6bc972
 
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
d6bc972
 
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
d6bc972
 
 
 
 
 
 
 
efcc6b0
 
d6bc972
efcc6b0
 
 
 
d6bc972
 
 
 
 
 
 
efcc6b0
 
 
 
 
 
d6bc972
efcc6b0
 
 
d6bc972
efcc6b0
d6bc972
 
 
 
 
 
efcc6b0
 
 
 
 
 
 
 
 
d6bc972
efcc6b0
 
 
 
 
d6bc972
efcc6b0
 
 
 
 
d6bc972
efcc6b0
 
 
 
 
 
 
 
 
 
 
d6bc972
efcc6b0
 
 
 
d6bc972
efcc6b0
 
d6bc972
efcc6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bc972
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from fastapi import APIRouter, HTTPException, Query
import pandas as pd
from database import supabase
from dotenv import load_dotenv
from schemas import (
    SatisfactionRequest, PerformanceRequest, RetentionRequest, TrainingRequest
)
from utils.load_models import (
    satisfaction_model, performance_model, retention_model, training_model, label_enc
)

router = APIRouter()

# Fetch data from Supabase
try:
    response = supabase.table("HR_analysis").select("*").execute()
    data = pd.DataFrame(response.data) if response.data else pd.DataFrame()
except Exception as e:
    print(f"Error fetching data: {e}")
    data = pd.DataFrame()

# Convert date columns
for col in ['Survey Date', 'StartDate', 'DOB']:
    if col in data.columns:
        data[col] = pd.to_datetime(data[col], errors='coerce')

# Calculate Age
if 'DOB' in data.columns:
    data['Age'] = (pd.to_datetime("today") - data['DOB']).dt.days // 365

# Clean Performance Score
score_map = {"Exceeds": 5, "Fully Meets": 4, "Needs Improvement": 3, "PIP": 2}
if 'Performance Score' in data.columns:
    data['Performance Score'] = data['Performance Score'].map(lambda x: score_map.get(str(x).strip(), None))
    data['Performance Score'] = pd.to_numeric(data['Performance Score'], errors='coerce')

@router.get("/satisfaction-analysis")
def satisfaction_analysis(department: str = Query(None, description="Filter by department")):
    """
    Get average satisfaction score for each department.

    Args:
        department (str, optional): Filter by department name.

    Returns:
        list: A list of average satisfaction scores per department.
    """
    try:
        if "DepartmentType" not in data.columns or "Satisfaction Score" not in data.columns:
            raise HTTPException(status_code=500, detail="Required columns missing in dataset")

        filtered_data = data.copy()
        if department:
            department = department.strip().title()
            filtered_data = filtered_data[filtered_data["DepartmentType"].str.strip().str.title() == department]

        if filtered_data.empty:
            return []

        result = filtered_data.groupby("DepartmentType")["Satisfaction Score"].mean().reset_index()
        return result.to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/department-performance")
def department_performance():
    """
    Get average performance score and employee rating by department.

    Returns:
        list: A list of average scores per department.
    """
    try:
        result = data.groupby("DepartmentType")[["Performance Score", "Current Employee Rating"]].mean().reset_index()
        return result.to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/training-analytics")
def training_analytics(program_name: str = Query(None, description="Filter by training program name")):
    """
    Get training program analytics.

    Args:
        program_name (str, optional): Filter by training program name.

    Returns:
        list: Training completion rates per program.
    """
    try:
        filtered_data = data if program_name is None else data[data["Training Program Name"] == program_name]
        if filtered_data.empty:
            return []

        result = filtered_data.groupby("Training Program Name")["Training Outcome"].value_counts(normalize=True).unstack(fill_value=0)
        return result.reset_index().to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/engagement-performance")
def engagement_performance():
    """
    Get correlation between engagement score and performance score.

    Returns:
        dict: Correlation coefficient.
    """
    try:
        correlation = data[['Engagement Score', 'Performance Score']].corr().iloc[0, 1]
        return {"correlation_coefficient": correlation}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/cost-benefit-analysis")
def cost_benefit_analysis():
    """
    Calculate Return on Investment (ROI) for training programs.

    Returns:
        list: ROI per department.
    """
    try:
        result = data.groupby("DepartmentType").apply(lambda x: x['Performance Score'].mean() / x['Training Cost'].sum()).reset_index(name="ROI")
        return result.to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/training-effectiveness")
def training_effectiveness():
    """
    Get average performance score after training.

    Returns:
        list: Average performance score per training program.
    """
    try:
        result = data.groupby("Training Program Name")["Performance Score"].mean().reset_index()
        return result.to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/diversity-inclusion")
def diversity_dashboard():
    """
    Get gender diversity breakdown by department.

    Returns:
        list: Percentage distribution of genders per department.
    """
    try:
        diversity_metrics = data.groupby("DepartmentType")["GenderCode"].value_counts(normalize=True).unstack(fill_value=0).reset_index()
        return diversity_metrics.to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/work-life-balance")
def worklife_balance_impact():
    """
    Get correlation between work-life balance score and performance score.

    Returns:
        dict: Correlation coefficient between work-life balance and performance.
    """
    try:
        if "Work-Life Balance Score" not in data.columns or "Performance Score" not in data.columns:
            raise HTTPException(status_code=500, detail="Required columns missing in dataset")

        correlation = data[['Work-Life Balance Score', 'Performance Score']].corr().iloc[0, 1]
        return {"correlation_coefficient": round(correlation, 3)}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/career-development")
def career_development(employee_id: str = Query(None, description="Filter by Employee ID")):
    """
    Get career development data.

    Args:
        employee_id (str, optional): Filter by employee ID.

    Returns:
        list: Career movements per employee.
    """
    try:
        filtered_data = data if employee_id is None else data[data["Employee ID"] == employee_id]
        career_progress = filtered_data.groupby("Employee ID")["StartDate"].count().reset_index(name="Career Movements")
        return career_progress.to_dict(orient="records")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

# ✅ Prediction Endpoints
@router.post('/predict/satisfaction')
def predict_satisfaction(data: SatisfactionRequest):
    """
    Predict employee satisfaction score.

    Args:
        data (SatisfactionRequest): Satisfaction model inputs.

    Returns:
        dict: Predicted satisfaction score.
    """
    try:
        prediction = satisfaction_model.predict([[data.engagement_score, data.work_life_balance_score, data.performance_score]])
        return {'satisfaction_score': prediction[0]}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.post('/predict/performance')
def predict_performance(data: PerformanceRequest):
    """
    Predict employee performance score.

    Args:
        data (PerformanceRequest): Performance model inputs.

    Returns:
        dict: Predicted performance score.
    """
    try:
        prediction = performance_model.predict([[data.satisfaction_score, data.engagement_score, data.training_duration, data.training_cost]])
        return {'performance_score': prediction[0]}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.post('/predict/retention')
def predict_retention(data: RetentionRequest):
    """
    Predict employee retention risk.

    Args:
        data (RetentionRequest): Retention model inputs.

    Returns:
        dict: Predicted retention risk.
    """
    try:
        prediction = retention_model.predict([[data.satisfaction_score, data.engagement_score, data.performance_score]])
        result = label_enc.inverse_transform(prediction)
        return {'retention_risk': result[0]}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@router.post('/predict/training')
def predict_training(data: TrainingRequest):
    """
    Predict training success.

    Args:
        data (TrainingRequest): Training model inputs.

    Returns:
        dict: Predicted training success.
    """
    try:
        prediction = training_model.predict([[data.training_type, data.training_duration, data.training_cost]])
        result = label_enc.inverse_transform(prediction)
        return {'training_success': result[0]}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))