File size: 3,792 Bytes
e617194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import zipfile

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

@spaces.GPU
def fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    image_size = im.size
    origin = im.copy()
    input_images = transform_image(im).unsqueeze(0).to("cuda")
    
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    im.putalpha(mask)

    output_file_path = os.path.join("output_images", "output_image_single.png")
    im.save(output_file_path)

    return (im, origin)

@spaces.GPU
def fn_url(url):
    im = load_img(url, output_type="pil")
    im = im.convert("RGB")
    origin = im.copy() 
    image_size = im.size
    input_images = transform_image(im).unsqueeze(0).to("cuda")
    
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    im.putalpha(mask)

    output_file_path = os.path.join("output_images", "output_image_url.png")
    im.save(output_file_path)

    return [im, origin] 

@spaces.GPU
def batch_fn(images):
    output_paths = []
    for idx, image_path in enumerate(images):
        im = load_img(image_path, output_type="pil")
        im = im.convert("RGB")
        image_size = im.size
        input_images = transform_image(im).unsqueeze(0).to("cuda")
        
        with torch.no_grad():
            preds = birefnet(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(image_size)
        im.putalpha(mask)

        output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
        im.save(output_file_path)
        output_paths.append(output_file_path)

    zip_file_path = os.path.join("output_images", "processed_images.zip")
    with zipfile.ZipFile(zip_file_path, 'w') as zipf:
        for file in output_paths:
            zipf.write(file, os.path.basename(file))

    return zip_file_path

batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")  # 複数画像のアップロードを許可

slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
image = gr.Image(label="Upload an image")
text = gr.Textbox(label="Paste an image URL")

chameleon = load_img("chameleon.jpg", output_type="pil")
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"

tab1 = gr.Interface(
    fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image"
)

tab2 = gr.Interface(fn_url, inputs=text, outputs=slider2, examples=[url], api_name="text")

tab3 = gr.Interface(
    batch_fn, 
    inputs=batch_image, 
    outputs=gr.File(label="Download Processed Files"), 
    api_name="batch",
    css="""
    #component-37 {
        display: none;
    }
    """
)

demo = gr.TabbedInterface(
    [tab1, tab2, tab3], ["image", "text", "batch"], title="Multi Birefnet for Background Removal"
)

if __name__ == "__main__":
    demo.launch()