localsavageai commited on
Commit
d8f5f8c
·
verified ·
1 Parent(s): c26c573

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -13,7 +13,7 @@ QWEN_API_URL = "Qwen/Qwen2.5-Max-Demo" # Gradio API for Qwen2.5 chat
13
  CHUNK_SIZE = 800
14
  TOP_K_RESULTS = 150
15
  SIMILARITY_THRESHOLD = 0.4
16
- PASSWORD_HASH = os.getenv("PASSWORD_HASH", "default_password") # Use environment variable for password
17
 
18
  BASE_SYSTEM_PROMPT = """
19
  Répondez en français selon ces règles :
@@ -117,12 +117,18 @@ def create_new_database(file_content: str, db_name: str, password: str, progress
117
  text_embeddings=list(zip(chunks, embeddings_list)),
118
  embedding=embeddings
119
  )
120
- vector_store.save_local(".")
121
- logging.info(f"FAISS database saved to: {faiss_file} and {pkl_file}")
 
 
 
 
 
 
122
 
123
  # Verify files were created
124
  if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
125
- return f"Failed to save FAISS database files.", []
126
  logging.info(f"FAISS database files created: {faiss_file}, {pkl_file}")
127
 
128
  # Update the list of available databases
@@ -145,7 +151,11 @@ def generate_response(user_input: str, db_name: str) -> str:
145
  if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
146
  return f"Database '{db_name}' does not exist."
147
 
148
- vector_store = FAISS.load_local(".", embeddings, allow_dangerous_deserialization=True)
 
 
 
 
149
 
150
  # Contextual search
151
  docs_scores = vector_store.similarity_search_with_score(
 
13
  CHUNK_SIZE = 800
14
  TOP_K_RESULTS = 150
15
  SIMILARITY_THRESHOLD = 0.4
16
+ PASSWORD_HASH = os.getenv("PASSWORD_HASH", "abc12345") # Use environment variable for password
17
 
18
  BASE_SYSTEM_PROMPT = """
19
  Répondez en français selon ces règles :
 
117
  text_embeddings=list(zip(chunks, embeddings_list)),
118
  embedding=embeddings
119
  )
120
+
121
+ # Save FAISS database
122
+ try:
123
+ vector_store.save_local(".")
124
+ logging.info(f"FAISS database saved to: {faiss_file} and {pkl_file}")
125
+ except Exception as e:
126
+ logging.error(f"FAISS save error: {str(e)}")
127
+ return "Failed to save FAISS database. Please check logs for details.", []
128
 
129
  # Verify files were created
130
  if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
131
+ return "Failed to save FAISS database files. Please check file permissions.", []
132
  logging.info(f"FAISS database files created: {faiss_file}, {pkl_file}")
133
 
134
  # Update the list of available databases
 
151
  if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
152
  return f"Database '{db_name}' does not exist."
153
 
154
+ try:
155
+ vector_store = FAISS.load_local(".", embeddings, allow_dangerous_deserialization=True)
156
+ except Exception as e:
157
+ logging.error(f"FAISS load error: {str(e)}")
158
+ return "Failed to load FAISS database. Please check logs for details."
159
 
160
  # Contextual search
161
  docs_scores = vector_store.similarity_search_with_score(