Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
from copy import copy | |
import numpy as np | |
from ultralytics.data import build_dataloader, build_yolo_dataset | |
from ultralytics.engine.trainer import BaseTrainer | |
from ultralytics.models import yolo | |
from ultralytics.nn.tasks import DetectionModel | |
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK | |
from ultralytics.utils.plotting import plot_images, plot_labels, plot_results | |
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first | |
# BaseTrainer python usage | |
class DetectionTrainer(BaseTrainer): | |
def build_dataset(self, img_path, mode='train', batch=None): | |
""" | |
Build YOLO Dataset. | |
Args: | |
img_path (str): Path to the folder containing images. | |
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. | |
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. | |
""" | |
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) | |
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs) | |
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): | |
"""Construct and return dataloader.""" | |
assert mode in ['train', 'val'] | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = self.build_dataset(dataset_path, mode, batch_size) | |
shuffle = mode == 'train' | |
if getattr(dataset, 'rect', False) and shuffle: | |
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False") | |
shuffle = False | |
workers = self.args.workers if mode == 'train' else self.args.workers * 2 | |
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader | |
def preprocess_batch(self, batch): | |
"""Preprocesses a batch of images by scaling and converting to float.""" | |
batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255 | |
return batch | |
def set_model_attributes(self): | |
"""nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps).""" | |
# self.args.box *= 3 / nl # scale to layers | |
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers | |
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers | |
self.model.nc = self.data['nc'] # attach number of classes to model | |
self.model.names = self.data['names'] # attach class names to model | |
self.model.args = self.args # attach hyperparameters to model | |
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Return a YOLO detection model.""" | |
model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
return model | |
def get_validator(self): | |
"""Returns a DetectionValidator for YOLO model validation.""" | |
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss' | |
return yolo.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) | |
def label_loss_items(self, loss_items=None, prefix='train'): | |
""" | |
Returns a loss dict with labelled training loss items tensor | |
""" | |
# Not needed for classification but necessary for segmentation & detection | |
keys = [f'{prefix}/{x}' for x in self.loss_names] | |
if loss_items is not None: | |
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats | |
return dict(zip(keys, loss_items)) | |
else: | |
return keys | |
def progress_string(self): | |
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size.""" | |
return ('\n' + '%11s' * | |
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') | |
def plot_training_samples(self, batch, ni): | |
"""Plots training samples with their annotations.""" | |
plot_images(images=batch['img'], | |
batch_idx=batch['batch_idx'], | |
cls=batch['cls'].squeeze(-1), | |
bboxes=batch['bboxes'], | |
paths=batch['im_file'], | |
fname=self.save_dir / f'train_batch{ni}.jpg', | |
on_plot=self.on_plot) | |
def plot_metrics(self): | |
"""Plots metrics from a CSV file.""" | |
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png | |
def plot_training_labels(self): | |
"""Create a labeled training plot of the YOLO model.""" | |
boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0) | |
cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0) | |
plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot) | |
def train(cfg=DEFAULT_CFG, use_python=False): | |
"""Train and optimize YOLO model given training data and device.""" | |
model = cfg.model or 'yolov8n.pt' | |
data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist") | |
device = cfg.device if cfg.device is not None else '' | |
args = dict(model=model, data=data, device=device) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).train(**args) | |
else: | |
trainer = DetectionTrainer(overrides=args) | |
trainer.train() | |
if __name__ == '__main__': | |
train() | |