Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import torch | |
from ultralytics.engine.predictor import BasePredictor | |
from ultralytics.engine.results import Results | |
from ultralytics.utils import DEFAULT_CFG, ROOT | |
class ClassificationPredictor(BasePredictor): | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.task = 'classify' | |
def preprocess(self, img): | |
"""Converts input image to model-compatible data type.""" | |
if not isinstance(img, torch.Tensor): | |
img = torch.stack([self.transforms(im) for im in img], dim=0) | |
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) | |
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 | |
def postprocess(self, preds, img, orig_imgs): | |
"""Postprocesses predictions to return Results objects.""" | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs | |
path = self.batch[0] | |
img_path = path[i] if isinstance(path, list) else path | |
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred)) | |
return results | |
def predict(cfg=DEFAULT_CFG, use_python=False): | |
"""Run YOLO model predictions on input images/videos.""" | |
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" | |
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ | |
else 'https://ultralytics.com/images/bus.jpg' | |
args = dict(model=model, source=source) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model)(**args) | |
else: | |
predictor = ClassificationPredictor(overrides=args) | |
predictor.predict_cli() | |
if __name__ == '__main__': | |
predict() | |