Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import os | |
import random | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torch.utils.data import dataloader, distributed | |
from ultralytics.data.loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots, LoadStreams, LoadTensor, | |
SourceTypes, autocast_list) | |
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS | |
from ultralytics.utils import RANK, colorstr | |
from ultralytics.utils.checks import check_file | |
from .dataset import YOLODataset | |
from .utils import PIN_MEMORY | |
class InfiniteDataLoader(dataloader.DataLoader): | |
"""Dataloader that reuses workers. Uses same syntax as vanilla DataLoader.""" | |
def __init__(self, *args, **kwargs): | |
"""Dataloader that infinitely recycles workers, inherits from DataLoader.""" | |
super().__init__(*args, **kwargs) | |
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) | |
self.iterator = super().__iter__() | |
def __len__(self): | |
"""Returns the length of the batch sampler's sampler.""" | |
return len(self.batch_sampler.sampler) | |
def __iter__(self): | |
"""Creates a sampler that repeats indefinitely.""" | |
for _ in range(len(self)): | |
yield next(self.iterator) | |
def reset(self): | |
"""Reset iterator. | |
This is useful when we want to modify settings of dataset while training. | |
""" | |
self.iterator = self._get_iterator() | |
class _RepeatSampler: | |
""" | |
Sampler that repeats forever. | |
Args: | |
sampler (Dataset.sampler): The sampler to repeat. | |
""" | |
def __init__(self, sampler): | |
"""Initializes an object that repeats a given sampler indefinitely.""" | |
self.sampler = sampler | |
def __iter__(self): | |
"""Iterates over the 'sampler' and yields its contents.""" | |
while True: | |
yield from iter(self.sampler) | |
def seed_worker(worker_id): # noqa | |
"""Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader.""" | |
worker_seed = torch.initial_seed() % 2 ** 32 | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |
def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32): | |
"""Build YOLO Dataset""" | |
return YOLODataset( | |
img_path=img_path, | |
imgsz=cfg.imgsz, | |
batch_size=batch, | |
augment=mode == 'train', # augmentation | |
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function | |
rect=cfg.rect or rect, # rectangular batches | |
cache=cfg.cache or None, | |
single_cls=cfg.single_cls or False, | |
stride=int(stride), | |
pad=0.0 if mode == 'train' else 0.5, | |
prefix=colorstr(f'{mode}: '), | |
use_segments=cfg.task == 'segment', | |
use_keypoints=cfg.task == 'pose', | |
classes=cfg.classes, | |
data=data, | |
fraction=cfg.fraction if mode == 'train' else 1.0) | |
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1): | |
"""Return an InfiniteDataLoader or DataLoader for training or validation set.""" | |
batch = min(batch, len(dataset)) | |
nd = torch.cuda.device_count() # number of CUDA devices | |
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers | |
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) | |
generator = torch.Generator() | |
generator.manual_seed(6148914691236517205 + RANK) | |
return InfiniteDataLoader(dataset=dataset, | |
batch_size=batch, | |
shuffle=shuffle and sampler is None, | |
num_workers=nw, | |
sampler=sampler, | |
pin_memory=PIN_MEMORY, | |
collate_fn=getattr(dataset, 'collate_fn', None), | |
worker_init_fn=seed_worker, | |
generator=generator) | |
def check_source(source): | |
"""Check source type and return corresponding flag values.""" | |
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False | |
if isinstance(source, (str, int, Path)): # int for local usb camera | |
source = str(source) | |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')) | |
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) | |
screenshot = source.lower() == 'screen' | |
if is_url and is_file: | |
source = check_file(source) # download | |
elif isinstance(source, tuple(LOADERS)): | |
in_memory = True | |
elif isinstance(source, (list, tuple)): | |
source = autocast_list(source) # convert all list elements to PIL or np arrays | |
from_img = True | |
elif isinstance(source, (Image.Image, np.ndarray)): | |
from_img = True | |
elif isinstance(source, torch.Tensor): | |
tensor = True | |
else: | |
raise TypeError('Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict') | |
return source, webcam, screenshot, from_img, in_memory, tensor | |
def load_inference_source(source=None, imgsz=640, vid_stride=1): | |
""" | |
Loads an inference source for object detection and applies necessary transformations. | |
Args: | |
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference. | |
imgsz (int, optional): The size of the image for inference. Default is 640. | |
vid_stride (int, optional): The frame interval for video sources. Default is 1. | |
Returns: | |
dataset (Dataset): A dataset object for the specified input source. | |
""" | |
source, webcam, screenshot, from_img, in_memory, tensor = check_source(source) | |
source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor) | |
# Dataloader | |
if tensor: | |
dataset = LoadTensor(source) | |
elif in_memory: | |
dataset = source | |
elif webcam: | |
dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride) | |
elif screenshot: | |
dataset = LoadScreenshots(source, imgsz=imgsz) | |
elif from_img: | |
dataset = LoadPilAndNumpy(source, imgsz=imgsz) | |
else: | |
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride) | |
# Attach source types to the dataset | |
setattr(dataset, 'source_type', source_type) | |
return dataset | |