File size: 20,730 Bytes
80914e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Ultralytics YOLO 🚀, AGPL-3.0 license

import inspect
import sys
from pathlib import Path
from typing import Union

from ultralytics.cfg import get_cfg
from ultralytics.engine.exporter import Exporter
from ultralytics.hub.utils import HUB_WEB_ROOT
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
from ultralytics.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks,
                               is_git_dir, yaml_load)
from ultralytics.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
from ultralytics.utils.downloads import GITHUB_ASSET_STEMS
from ultralytics.utils.torch_utils import smart_inference_mode


class Model:
    """

    A base model class to unify apis for all the models.



    Args:

        model (str, Path): Path to the model file to load or create.

        task (Any, optional): Task type for the YOLO model. Defaults to None.



    Attributes:

        predictor (Any): The predictor object.

        model (Any): The model object.

        trainer (Any): The trainer object.

        task (str): The type of model task.

        ckpt (Any): The checkpoint object if the model loaded from *.pt file.

        cfg (str): The model configuration if loaded from *.yaml file.

        ckpt_path (str): The checkpoint file path.

        overrides (dict): Overrides for the trainer object.

        metrics (Any): The data for metrics.



    Methods:

        __call__(source=None, stream=False, **kwargs):

            Alias for the predict method.

        _new(cfg:str, verbose:bool=True) -> None:

            Initializes a new model and infers the task type from the model definitions.

        _load(weights:str, task:str='') -> None:

            Initializes a new model and infers the task type from the model head.

        _check_is_pytorch_model() -> None:

            Raises TypeError if the model is not a PyTorch model.

        reset() -> None:

            Resets the model modules.

        info(verbose:bool=False) -> None:

            Logs the model info.

        fuse() -> None:

            Fuses the model for faster inference.

        predict(source=None, stream=False, **kwargs) -> List[ultralytics.engine.results.Results]:

            Performs prediction using the YOLO model.



    Returns:

        list(ultralytics.engine.results.Results): The prediction results.

    """

    def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
        """

        Initializes the YOLO model.



        Args:

            model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.

            task (Any, optional): Task type for the YOLO model. Defaults to None.

        """
        self.callbacks = callbacks.get_default_callbacks()
        self.predictor = None  # reuse predictor
        self.model = None  # model object
        self.trainer = None  # trainer object
        self.ckpt = None  # if loaded from *.pt
        self.cfg = None  # if loaded from *.yaml
        self.ckpt_path = None
        self.overrides = {}  # overrides for trainer object
        self.metrics = None  # validation/training metrics
        self.session = None  # HUB session
        self.task = task  # task type
        model = str(model).strip()  # strip spaces

        # Check if Ultralytics HUB model from https://hub.ultralytics.com
        if self.is_hub_model(model):
            from ultralytics.hub.session import HUBTrainingSession
            self.session = HUBTrainingSession(model)
            model = self.session.model_file

        # Load or create new YOLO model
        suffix = Path(model).suffix
        if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
            model, suffix = Path(model).with_suffix('.pt'), '.pt'  # add suffix, i.e. yolov8n -> yolov8n.pt
        if suffix in ('.yaml', '.yml'):
            self._new(model, task)
        else:
            self._load(model, task)

    def __call__(self, source=None, stream=False, **kwargs):
        """Calls the 'predict' function with given arguments to perform object detection."""
        return self.predict(source, stream, **kwargs)

    @staticmethod
    def is_hub_model(model):
        """Check if the provided model is a HUB model."""
        return any((
            model.startswith(f'{HUB_WEB_ROOT}/models/'),  # i.e. https://hub.ultralytics.com/models/MODEL_ID
            [len(x) for x in model.split('_')] == [42, 20],  # APIKEY_MODELID
            len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\')))  # MODELID

    def _new(self, cfg: str, task=None, model=None, verbose=True):
        """

        Initializes a new model and infers the task type from the model definitions.



        Args:

            cfg (str): model configuration file

            task (str | None): model task

            model (BaseModel): Customized model.

            verbose (bool): display model info on load

        """
        cfg_dict = yaml_model_load(cfg)
        self.cfg = cfg
        self.task = task or guess_model_task(cfg_dict)
        model = model or self.smart_load('model')
        self.model = model(cfg_dict, verbose=verbose and RANK == -1)  # build model
        self.overrides['model'] = self.cfg

        # Below added to allow export from yamls
        args = {**DEFAULT_CFG_DICT, **self.overrides}  # combine model and default args, preferring model args
        self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
        self.model.task = self.task

    def _load(self, weights: str, task=None):
        """

        Initializes a new model and infers the task type from the model head.



        Args:

            weights (str): model checkpoint to be loaded

            task (str | None): model task

        """
        suffix = Path(weights).suffix
        if suffix == '.pt':
            self.model, self.ckpt = attempt_load_one_weight(weights)
            self.task = self.model.args['task']
            self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
            self.ckpt_path = self.model.pt_path
        else:
            weights = check_file(weights)
            self.model, self.ckpt = weights, None
            self.task = task or guess_model_task(weights)
            self.ckpt_path = weights
        self.overrides['model'] = weights
        self.overrides['task'] = self.task

    def _check_is_pytorch_model(self):
        """

        Raises TypeError is model is not a PyTorch model

        """
        pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
        pt_module = isinstance(self.model, nn.Module)
        if not (pt_module or pt_str):
            raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
                            f'PyTorch models can be used to train, val, predict and export, i.e. '
                            f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
                            f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")

    @smart_inference_mode()
    def reset_weights(self):
        """

        Resets the model modules parameters to randomly initialized values, losing all training information.

        """
        self._check_is_pytorch_model()
        for m in self.model.modules():
            if hasattr(m, 'reset_parameters'):
                m.reset_parameters()
        for p in self.model.parameters():
            p.requires_grad = True
        return self

    @smart_inference_mode()
    def load(self, weights='yolov8n.pt'):
        """

        Transfers parameters with matching names and shapes from 'weights' to model.

        """
        self._check_is_pytorch_model()
        if isinstance(weights, (str, Path)):
            weights, self.ckpt = attempt_load_one_weight(weights)
        self.model.load(weights)
        return self

    def info(self, detailed=False, verbose=True):
        """

        Logs model info.



        Args:

            detailed (bool): Show detailed information about model.

            verbose (bool): Controls verbosity.

        """
        self._check_is_pytorch_model()
        return self.model.info(detailed=detailed, verbose=verbose)

    def fuse(self):
        """Fuse PyTorch Conv2d and BatchNorm2d layers."""
        self._check_is_pytorch_model()
        self.model.fuse()

    @smart_inference_mode()
    def predict(self, source=None, stream=False, predictor=None, **kwargs):
        """

        Perform prediction using the YOLO model.



        Args:

            source (str | int | PIL | np.ndarray): The source of the image to make predictions on.

                          Accepts all source types accepted by the YOLO model.

            stream (bool): Whether to stream the predictions or not. Defaults to False.

            predictor (BasePredictor): Customized predictor.

            **kwargs : Additional keyword arguments passed to the predictor.

                       Check the 'configuration' section in the documentation for all available options.



        Returns:

            (List[ultralytics.engine.results.Results]): The prediction results.

        """
        if source is None:
            source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
            LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
        is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
            x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
        # Check prompts for SAM/FastSAM
        prompts = kwargs.pop('prompts', None)
        overrides = self.overrides.copy()
        overrides['conf'] = 0.25
        overrides.update(kwargs)  # prefer kwargs
        overrides['mode'] = kwargs.get('mode', 'predict')
        assert overrides['mode'] in ['track', 'predict']
        if not is_cli:
            overrides['save'] = kwargs.get('save', False)  # do not save by default if called in Python
        if not self.predictor:
            self.task = overrides.get('task') or self.task
            predictor = predictor or self.smart_load('predictor')
            self.predictor = predictor(overrides=overrides, _callbacks=self.callbacks)
            self.predictor.setup_model(model=self.model, verbose=is_cli)
        else:  # only update args if predictor is already setup
            self.predictor.args = get_cfg(self.predictor.args, overrides)
            if 'project' in overrides or 'name' in overrides:
                self.predictor.save_dir = self.predictor.get_save_dir()
        # Set prompts for SAM/FastSAM
        if len and hasattr(self.predictor, 'set_prompts'):
            self.predictor.set_prompts(prompts)
        return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)

    def track(self, source=None, stream=False, persist=False, **kwargs):
        """

        Perform object tracking on the input source using the registered trackers.



        Args:

            source (str, optional): The input source for object tracking. Can be a file path or a video stream.

            stream (bool, optional): Whether the input source is a video stream. Defaults to False.

            persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.

            **kwargs (optional): Additional keyword arguments for the tracking process.



        Returns:

            (List[ultralytics.engine.results.Results]): The tracking results.



        """
        if not hasattr(self.predictor, 'trackers'):
            from ultralytics.trackers import register_tracker
            register_tracker(self, persist)
        # ByteTrack-based method needs low confidence predictions as input
        conf = kwargs.get('conf') or 0.1
        kwargs['conf'] = conf
        kwargs['mode'] = 'track'
        return self.predict(source=source, stream=stream, **kwargs)

    @smart_inference_mode()
    def val(self, data=None, validator=None, **kwargs):
        """

        Validate a model on a given dataset.



        Args:

            data (str): The dataset to validate on. Accepts all formats accepted by yolo

            validator (BaseValidator): Customized validator.

            **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs

        """
        overrides = self.overrides.copy()
        overrides['rect'] = True  # rect batches as default
        overrides.update(kwargs)
        overrides['mode'] = 'val'
        args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
        args.data = data or args.data
        if 'task' in overrides:
            self.task = args.task
        else:
            args.task = self.task
        validator = validator or self.smart_load('validator')
        if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
            args.imgsz = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
        args.imgsz = check_imgsz(args.imgsz, max_dim=1)

        validator = validator(args=args, _callbacks=self.callbacks)
        validator(model=self.model)
        self.metrics = validator.metrics

        return validator.metrics

    @smart_inference_mode()
    def benchmark(self, **kwargs):
        """

        Benchmark a model on all export formats.



        Args:

            **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs

        """
        self._check_is_pytorch_model()
        from ultralytics.utils.benchmarks import benchmark
        overrides = self.model.args.copy()
        overrides.update(kwargs)
        overrides['mode'] = 'benchmark'
        overrides = {**DEFAULT_CFG_DICT, **overrides}  # fill in missing overrides keys with defaults
        return benchmark(
            model=self,
            data=kwargs.get('data'),  # if no 'data' argument passed set data=None for default datasets
            imgsz=overrides['imgsz'],
            half=overrides['half'],
            int8=overrides['int8'],
            device=overrides['device'],
            verbose=overrides['verbose'])

    def export(self, **kwargs):
        """

        Export model.



        Args:

            **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs

        """
        self._check_is_pytorch_model()
        overrides = self.overrides.copy()
        overrides.update(kwargs)
        overrides['mode'] = 'export'
        if overrides.get('imgsz') is None:
            overrides['imgsz'] = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
        if 'batch' not in kwargs:
            overrides['batch'] = 1  # default to 1 if not modified
        if 'data' not in kwargs:
            overrides['data'] = None  # default to None if not modified (avoid int8 calibration with coco.yaml)
        args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
        args.task = self.task
        return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)

    def train(self, trainer=None, **kwargs):
        """

        Trains the model on a given dataset.



        Args:

            trainer (BaseTrainer, optional): Customized trainer.

            **kwargs (Any): Any number of arguments representing the training configuration.

        """
        self._check_is_pytorch_model()
        if self.session:  # Ultralytics HUB session
            if any(kwargs):
                LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
            kwargs = self.session.train_args
        check_pip_update_available()
        overrides = self.overrides.copy()
        if kwargs.get('cfg'):
            LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
            overrides = yaml_load(check_yaml(kwargs['cfg']))
        overrides.update(kwargs)
        overrides['mode'] = 'train'
        if not overrides.get('data'):
            raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
        if overrides.get('resume'):
            overrides['resume'] = self.ckpt_path
        self.task = overrides.get('task') or self.task
        trainer = trainer or self.smart_load('trainer')
        self.trainer = trainer(overrides=overrides, _callbacks=self.callbacks)
        if not overrides.get('resume'):  # manually set model only if not resuming
            self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
            self.model = self.trainer.model
        self.trainer.hub_session = self.session  # attach optional HUB session
        self.trainer.train()
        # Update model and cfg after training
        if RANK in (-1, 0):
            self.model, _ = attempt_load_one_weight(str(self.trainer.best))
            self.overrides = self.model.args
            self.metrics = getattr(self.trainer.validator, 'metrics', None)  # TODO: no metrics returned by DDP

    def to(self, device):
        """

        Sends the model to the given device.



        Args:

            device (str): device

        """
        self._check_is_pytorch_model()
        self.model.to(device)

    def tune(self, *args, **kwargs):
        """

        Runs hyperparameter tuning using Ray Tune. See ultralytics.utils.tuner.run_ray_tune for Args.



        Returns:

            (dict): A dictionary containing the results of the hyperparameter search.



        Raises:

            ModuleNotFoundError: If Ray Tune is not installed.

        """
        self._check_is_pytorch_model()
        from ultralytics.utils.tuner import run_ray_tune
        return run_ray_tune(self, *args, **kwargs)

    @property
    def names(self):
        """Returns class names of the loaded model."""
        return self.model.names if hasattr(self.model, 'names') else None

    @property
    def device(self):
        """Returns device if PyTorch model."""
        return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None

    @property
    def transforms(self):
        """Returns transform of the loaded model."""
        return self.model.transforms if hasattr(self.model, 'transforms') else None

    def add_callback(self, event: str, func):
        """Add a callback."""
        self.callbacks[event].append(func)

    def clear_callback(self, event: str):
        """Clear all event callbacks."""
        self.callbacks[event] = []

    @staticmethod
    def _reset_ckpt_args(args):
        """Reset arguments when loading a PyTorch model."""
        include = {'imgsz', 'data', 'task', 'single_cls'}  # only remember these arguments when loading a PyTorch model
        return {k: v for k, v in args.items() if k in include}

    def _reset_callbacks(self):
        """Reset all registered callbacks."""
        for event in callbacks.default_callbacks.keys():
            self.callbacks[event] = [callbacks.default_callbacks[event][0]]

    def __getattr__(self, attr):
        """Raises error if object has no requested attribute."""
        name = self.__class__.__name__
        raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")

    def smart_load(self, key):
        """Load model/trainer/validator/predictor."""
        try:
            return self.task_map[self.task][key]
        except Exception:
            name = self.__class__.__name__
            mode = inspect.stack()[1][3]  # get the function name.
            raise NotImplementedError(
                f'WARNING ⚠️ `{name}` model does not support `{mode}` mode for `{self.task}` task yet.')

    @property
    def task_map(self):
        """

        Map head to model, trainer, validator, and predictor classes.



        Returns:

            task_map (dict): The map of model task to mode classes.

        """
        raise NotImplementedError('Please provide task map for your model!')