Spaces:
Running
Running
File size: 9,872 Bytes
2319518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import argparse
import json
import logging
import os
from parser import ReActParser
import prettytable
import tqdm
from code_interpreter import code_interpreter
from config import (get_model, get_react_parser, get_react_prompt,
model_path_map)
from datasets import load_dataset
from metrics.code_execution import eval_code_execution_rate
from metrics.gsm8k import eval_gsm8k_acc, is_correct
from metrics.visualization import eval_visualization_acc
from utils.code_utils import replace_upload_fname
from utils.data_utils import load_jsonl
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
)
WORK_DIR = os.getenv('CODE_INTERPRETER_WORK_DIR', '/tmp/workspace')
os.makedirs(WORK_DIR, exist_ok=True)
os.system(f'cp -r upload_file_clean {WORK_DIR}/upload_file')
os.system('cp -r upload_file_clean ./upload_file')
global_eval_result = {
'code_executability': {
'math': None,
'visualization': None,
'general': None,
},
'code_correctness': {
'math': None,
'visualization-hard': None,
'visualization-easy': None,
}
}
def llm_with_plugin(args, query, item=None, exec_limit=3):
exec_count = 0
# Build ReAct prompt
upload_fname_list = item[
'input_file_path'] if item and 'input_file_path' in item else []
lang = item['lang'] if item and 'lang' in item else 'en'
react_prompt_obj = get_react_prompt(args.model, query, lang,
upload_fname_list)
planning_prompt = react_prompt_obj.build_prompt()
# Execute the code when providing the first action in the query
if '<|im_start|>' in query:
_, prepend_code, __ = ReActParser().parse_latest_plugin_call(query)
prepend_code = replace_upload_fname(prepend_code, upload_fname_list)
call_plugin(_, [prepend_code], clear=(exec_count == 0))
exec_count += 1
exec_limit += 1
# Inference and execute
text = ''
while exec_count < exec_limit:
stop_words_list = react_prompt_obj.get_stop_words_list()
output = text_completion(args.llm,
planning_prompt + text,
stop_words=stop_words_list)
if args.gen_only:
text += output
break
react_parser = get_react_parser(args.model)
action, action_input, output = react_parser.parse_latest_plugin_call(
output)
if action:
action_input = replace_upload_fname(action_input,
upload_fname_list)
observation = call_plugin(action, [action_input],
clear=(exec_count == 0))
output += react_prompt_obj.build_observation(observation)
text += output
exec_count += 1
if 'error:' in observation or 'Traceback' in observation:
break
else:
text += output
break
return text
def text_completion(llm, input_text, stop_words=[]):
logging.info('Generating'.center(60, '='))
logging.info('Input'.center(60, '-'))
logging.info(input_text)
output = llm.generate(input_text, stop_words)
logging.info('Output'.center(60, '-'))
logging.info(output)
return output
def call_plugin(plugin_name, plugin_args_list, clear=False):
# Relax constraints on plugin name.
logging.info('Call code interpreter'.center(60, '='))
obs = code_interpreter(plugin_args_list, clear=clear)
logging.info(obs)
return obs
def process_code_interpreter(item, writer):
query = item['query']
exec_limit = 3 if 'visualization' in item['tags'] else 1
response = llm_with_plugin(args=args,
query=query,
item=item,
exec_limit=exec_limit)
item['gen'] = response
writer.write(json.dumps(item, ensure_ascii=False) + '\n')
writer.flush()
def process_gsm8k(doc, writer):
context = doc['question']
completion = llm_with_plugin(args=args, query=context)
acc = is_correct(completion, doc['answer'])
doc['completion'] = completion
doc['acc'] = acc
writer.write(json.dumps(doc, ensure_ascii=False) + '\n')
writer.flush()
def sequential_processing(args, data_list, process_func, writer):
for item in tqdm.tqdm(data_list):
process_func(item, writer)
process_func_map = {
'gsm8k': process_gsm8k,
'visualization': process_code_interpreter
}
def gather_eval_result(model_name):
for metric in global_eval_result:
logging.info(metric)
table = prettytable.PrettyTable()
table.field_names = ['model'] + list(global_eval_result[metric].keys())
row_data = [model_name]
for item in global_eval_result[metric].values():
item = str(item) if not item else str(round(item, 2))
row_data.append(item)
table.add_row(row_data)
logging.info('\n' + str(table))
def eval_metrics(args, test_set, full_output_fname):
# metrics
assert os.path.exists(
full_output_fname), f'Not Found File {full_output_fname}.'
inference_res = load_jsonl(full_output_fname)
assert len(inference_res) == len(
test_set
), f'There are still {len(test_set)-len(inference_res)} cases left.'
abs_output_fname = os.path.join(os.path.dirname(os.path.abspath(__file__)),
full_output_fname)
if args.task == 'gsm8k':
math_code_correctness = eval_gsm8k_acc(abs_output_fname)
global_eval_result['code_correctness'].update(math_code_correctness)
else:
code_executability = eval_code_execution_rate(abs_output_fname,
args.task, args.model)
global_eval_result['code_executability'].update(code_executability)
if args.task in ['all_ci', 'visualization'
] and not args.eval_code_exec_only:
visualization_code_correctness = eval_visualization_acc(
abs_output_fname, args.model, args.vis_judger)
global_eval_result['code_correctness'].update(
visualization_code_correctness)
def main(args):
current_dir = os.getcwd()
os.makedirs(args.output_path, exist_ok=True)
full_output_fname = os.path.join(
args.output_path,
(args.output_fname or f'{args.task}_{args.model}_res.jsonl'))
if not os.path.exists(full_output_fname):
with open(full_output_fname, 'w'):
logging.info(f'Create file {full_output_fname} done.')
# build data
if args.task == 'gsm8k':
dataset = load_dataset('gsm8k', 'main')
test_set = dataset['test']
else:
eval_data_path = os.path.join(args.input_path, args.input_fname)
test_set = [
item for item in load_jsonl(eval_data_path)
if args.task in item['tags']
]
logging.info(f'Test set: {len(test_set)}')
if args.eval_only:
eval_metrics(args, test_set, full_output_fname)
else:
key = 'question' if args.task == 'gsm8k' else 'query'
cache_question = [item[key] for item in load_jsonl(full_output_fname)
] if not args.force else []
data_list = [
item for item in test_set if item[key] not in cache_question
]
logging.info(f'Left cases: {len(data_list)}')
# inference
writer_mode = 'w' if args.force else 'a'
f_output = open(full_output_fname, writer_mode, encoding='utf-8')
process_func = process_func_map.get(args.task,
process_code_interpreter)
sequential_processing(args, data_list, process_func, f_output)
f_output.close()
# evaluate
if not args.gen_exec_only:
eval_metrics(args, test_set, full_output_fname)
os.chdir(current_dir)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model',
type=str,
default='qwen-14b-chat',
choices=list(model_path_map.keys()))
parser.add_argument(
'--task',
type=str,
default='all',
choices=['all', 'gsm8k', 'visualization', 'general'])
parser.add_argument('--output-path', type=str, default='output_data')
parser.add_argument('--input-path', type=str, default='eval_data')
parser.add_argument('-o', '--output-fname', type=str, default='')
parser.add_argument('-i',
'--input-fname',
type=str,
default='eval_code_interpreter_v1.jsonl')
parser.add_argument('-f', '--force', action='store_true', default=False)
parser.add_argument('--eval-only', action='store_true', default=False)
parser.add_argument('--eval-code-exec-only',
action='store_true',
default=False)
parser.add_argument('--gen-exec-only', action='store_true', default=False)
parser.add_argument('--gen-only', action='store_true', default=False)
parser.add_argument('--vis-judger', type=str, default="'gpt-4-vision-preview'",
choices=['gpt-4-vision-preview', 'qwen-vl-chat', 'qwen-vl-plus'])
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if not args.eval_only:
args.llm = get_model(args.model)
logging.info(f'Init {args.model} done.')
if args.task == 'all':
for key in ['gsm8k', 'visualization', 'general']:
args.task = key
main(args)
else:
main(args)
gather_eval_result(args.model)
|