Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import VideoLlavaForConditionalGeneration, VideoLlavaProcessor, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import cv2
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", torch_dtype=torch.float16, device_map="cuda")
|
12 |
+
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
13 |
+
#model.to("cuda")
|
14 |
+
|
15 |
+
def replace_video_with_images(text, frames):
|
16 |
+
return text.replace("<video>", "<image>" * frames)
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
def sample_frames(video_file, num_frames):
|
22 |
+
video = cv2.VideoCapture(video_file)
|
23 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
24 |
+
interval = max(1, total_frames // num_frames)
|
25 |
+
frames = []
|
26 |
+
|
27 |
+
for i in range(0, total_frames, interval):
|
28 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, i)
|
29 |
+
ret, frame = video.read()
|
30 |
+
if not ret:
|
31 |
+
continue
|
32 |
+
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
33 |
+
frames.append(pil_img)
|
34 |
+
if len(frames) == num_frames:
|
35 |
+
break
|
36 |
+
|
37 |
+
video.release()
|
38 |
+
return frames
|
39 |
+
|
40 |
+
@spaces.GPU
|
41 |
+
def bot_streaming(message, history):
|
42 |
+
|
43 |
+
txt = message.text
|
44 |
+
ext_buffer = f"USER: {txt} ASSISTANT: "
|
45 |
+
|
46 |
+
if message.files:
|
47 |
+
if len(message.files) == 1:
|
48 |
+
image = [message.files[0].path]
|
49 |
+
# interleaved images or video
|
50 |
+
elif len(message.files) > 1:
|
51 |
+
image = [msg.path for msg in message.files]
|
52 |
+
else:
|
53 |
+
|
54 |
+
def has_file_data(lst):
|
55 |
+
return any(isinstance(item, FileData) for sublist in lst if isinstance(sublist, tuple) for item in sublist)
|
56 |
+
|
57 |
+
def extract_paths(lst):
|
58 |
+
return [item.path for sublist in lst if isinstance(sublist, tuple) for item in sublist if isinstance(item, FileData)]
|
59 |
+
|
60 |
+
latest_text_only_index = -1
|
61 |
+
|
62 |
+
for i, item in enumerate(history):
|
63 |
+
if all(isinstance(sub_item, str) for sub_item in item):
|
64 |
+
latest_text_only_index = i
|
65 |
+
|
66 |
+
image = [path for i, item in enumerate(history) if i < latest_text_only_index and has_file_data(item) for path in extract_paths(item)]
|
67 |
+
|
68 |
+
if message.files is None:
|
69 |
+
gr.Error("You need to upload an image or video for LLaVA to work.")
|
70 |
+
|
71 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
|
72 |
+
image_extensions = Image.registered_extensions()
|
73 |
+
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
74 |
+
image_list = []
|
75 |
+
video_list = []
|
76 |
+
|
77 |
+
print("media", image)
|
78 |
+
if len(image) == 1:
|
79 |
+
if image[0].endswith(video_extensions):
|
80 |
+
|
81 |
+
video_list = sample_frames(image[0], 12)
|
82 |
+
|
83 |
+
prompt = f"USER: <video> {message.text} ASSISTANT:"
|
84 |
+
elif image[0].endswith(image_extensions):
|
85 |
+
image_list.append(Image.open(image[0]).convert("RGB"))
|
86 |
+
prompt = f"USER: <image> {message.text} ASSISTANT:"
|
87 |
+
|
88 |
+
elif len(image) > 1:
|
89 |
+
user_prompt = message.text
|
90 |
+
|
91 |
+
for img in image:
|
92 |
+
if img.endswith(image_extensions):
|
93 |
+
img = Image.open(img).convert("RGB")
|
94 |
+
image_list.append(img)
|
95 |
+
|
96 |
+
elif img.endswith(video_extensions):
|
97 |
+
video_list.append(sample_frames(img, 7))
|
98 |
+
print(len(video_list[-1]))
|
99 |
+
#for frame in sample_frames(img, 6):
|
100 |
+
#video_list.append(frame)
|
101 |
+
|
102 |
+
print("video_list", video_list)
|
103 |
+
image_tokens = ""
|
104 |
+
video_tokens = ""
|
105 |
+
|
106 |
+
if image_list != []:
|
107 |
+
image_tokens = "<image>" * len(image_list)
|
108 |
+
if video_list != []:
|
109 |
+
|
110 |
+
toks = len(video_list)
|
111 |
+
video_tokens = "<video>" * toks
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
prompt = f"USER: {image_tokens}{video_tokens} {user_prompt} ASSISTANT:"
|
116 |
+
|
117 |
+
print(prompt)
|
118 |
+
if image_list != [] and video_list != []:
|
119 |
+
inputs = processor(prompt, images=image_list, videos=video_list, return_tensors="pt").to("cuda",torch.float16)
|
120 |
+
elif image_list != [] and video_list == []:
|
121 |
+
inputs = processor(prompt, images=image_list, return_tensors="pt").to("cuda", torch.float16)
|
122 |
+
elif image_list == [] and video_list != []:
|
123 |
+
inputs = processor(prompt, videos=video_list, return_tensors="pt").to("cuda", torch.float16)
|
124 |
+
|
125 |
+
|
126 |
+
streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True, "clean_up_tokenization_spaces":True})
|
127 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100)
|
128 |
+
generated_text = ""
|
129 |
+
|
130 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
131 |
+
thread.start()
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
buffer = ""
|
136 |
+
for new_text in streamer:
|
137 |
+
|
138 |
+
buffer += new_text
|
139 |
+
|
140 |
+
generated_text_without_prompt = buffer[len(ext_buffer):][:-1]
|
141 |
+
time.sleep(0.01)
|
142 |
+
yield generated_text_without_prompt
|
143 |
+
|
144 |
+
|
145 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="VideoLLaVA", examples=[
|
146 |
+
{"text": "The input contains two videos, are the cats in this video and this video doing the same thing?", "files":["./cats_1.mp4", "./cats_2.mp4"]},
|
147 |
+
{"text": "There are two images in the input. What is the relationship between this image and this image?", "files":["./rococo_1.jpg", "./rococo_2.jpg"]},
|
148 |
+
{"text": "What is the cat doing?", "files":["./cat.mp4"]},
|
149 |
+
{"text": "How to make this pastry?", "files":["./baklava.png"]}],
|
150 |
+
textbox=gr.MultimodalTextbox(file_count="multiple"),
|
151 |
+
description="Try [Video-LLaVA](https://huggingface.co/docs/transformers/main/en/model_doc/video_llava) in this demo. Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. ",
|
152 |
+
stop_btn="Stop Generation", multimodal=True)
|
153 |
+
demo.launch(debug=True)
|