Spaces:
Runtime error
Runtime error
File size: 13,365 Bytes
46cfe25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
from collections import deque
from functools import partial
from inspect import isfunction
import torch.nn.functional as F
import librosa.sequence
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def linear_beta_schedule(timesteps, max_beta=0.02):
"""
linear schedule
"""
betas = np.linspace(1e-4, max_beta, timesteps)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
beta_schedule = {
"cosine": cosine_beta_schedule,
"linear": linear_beta_schedule,
}
class GaussianDiffusion(nn.Module):
def __init__(self,
denoise_fn,
out_dims=128,
timesteps=1000,
k_step=1000,
max_beta=0.02,
spec_min=-12,
spec_max=2):
super().__init__()
self.denoise_fn = denoise_fn
self.out_dims = out_dims
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.k_step = k_step
self.noise_list = deque(maxlen=4)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, cond):
noise_pred = self.denoise_fn(x, t, cond=cond)
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
"""
Use the PLMS method from
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
"""
def get_x_pred(x, noise_t, t):
a_t = extract(self.alphas_cumprod, t, x.shape)
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x + x_delta
return x_pred
noise_list = self.noise_list
noise_pred = self.denoise_fn(x, t, cond=cond)
if len(noise_list) == 0:
x_pred = get_x_pred(x, noise_pred, t)
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
elif len(noise_list) == 1:
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
elif len(noise_list) == 2:
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
else:
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
x_prev = get_x_pred(x, noise_pred_prime, t)
noise_list.append(noise_pred)
return x_prev
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t, cond)
if loss_type == 'l1':
loss = (noise - x_recon).abs().mean()
elif loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
else:
raise NotImplementedError()
return loss
def forward(self,
condition,
gt_spec=None,
infer=True,
infer_speedup=10,
method='dpm-solver',
k_step=300,
use_tqdm=True):
"""
conditioning diffusion, use fastspeech2 encoder output as the condition
"""
cond = condition.transpose(1, 2)
b, device = condition.shape[0], condition.device
if not infer:
spec = self.norm_spec(gt_spec)
t = torch.randint(0, self.k_step, (b,), device=device).long()
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
return self.p_losses(norm_spec, t, cond=cond)
else:
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
if gt_spec is None:
t = self.k_step
x = torch.randn(shape, device=device)
else:
t = k_step
norm_spec = self.norm_spec(gt_spec)
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
if method is not None and infer_speedup > 1:
if method == 'dpm-solver':
from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
if use_tqdm:
self.bar.update(1)
return ret
return wrapped
model_fn = model_wrapper(
my_wrapper(self.denoise_fn),
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs={"cond": cond}
)
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
# (We recommend singlestep DPM-Solver for unconditional sampling)
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
dpm_solver = DPM_Solver(model_fn, noise_schedule)
steps = t // infer_speedup
if use_tqdm:
self.bar = tqdm(desc="sample time step", total=steps)
x = dpm_solver.sample(
x,
steps=steps,
order=3,
skip_type="time_uniform",
method="singlestep",
)
if use_tqdm:
self.bar.close()
elif method == 'pndm':
self.noise_list = deque(maxlen=4)
if use_tqdm:
for i in tqdm(
reversed(range(0, t, infer_speedup)), desc='sample time step',
total=t // infer_speedup,
):
x = self.p_sample_plms(
x, torch.full((b,), i, device=device, dtype=torch.long),
infer_speedup, cond=cond
)
else:
for i in reversed(range(0, t, infer_speedup)):
x = self.p_sample_plms(
x, torch.full((b,), i, device=device, dtype=torch.long),
infer_speedup, cond=cond
)
else:
raise NotImplementedError(method)
else:
if use_tqdm:
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
else:
for i in reversed(range(0, t)):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
return self.denorm_spec(x)
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|