File size: 8,817 Bytes
e428df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
000c55e
e428df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#    Copyright 2024 Alibaba DAMO Academy
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import os
import re

import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.regnet import RegStage
from timm.models.layers import LayerNorm2d
from transformers import TRANSFORMERS_CACHE


def parse_snapshot_folder(repo_id, cache_dir=None, repo_type="model"):
    revision = "main"
    # 1. parse the downloaded cache folder
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    else:
        cache_dir = cache_dir
    object_id = repo_id.replace("/", "--")
    repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}")
    # 2. resolve refs (for instance to convert main to the associated commit sha)
    refs_dir = os.path.join(repo_cache, "refs")
    if os.path.isdir(refs_dir):
        revision_file = os.path.join(refs_dir, revision)
        if os.path.isfile(revision_file):
            with open(revision_file) as f:
                revision = f.read()
    # 3. acquire the snapshot folder
    folder = os.path.join(repo_cache, "snapshots", revision)

    return folder


def load_mm_projector(model_path, cache_dir=None, token=None):
    if os.path.exists(os.path.join(model_path, 'mm_projector.bin')):
        is_local = True
        folder = model_path
    else:
        is_local = False
        folder = parse_snapshot_folder(model_path, cache_dir=cache_dir, repo_type="model")
        if not os.path.exists(os.path.join(folder, 'mm_projector.bin')):
            # downloading from remote repo
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id=model_path, cache_dir=cache_dir, token=token)

    mm_projector_weights = torch.load(os.path.join(folder, 'mm_projector.bin'), map_location='cpu')
    mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
    return mm_projector_weights


class IdentityMap(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}


class SimpleResBlock(nn.Module):

    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels),
            nn.GELU(),
            nn.Linear(channels, channels)
        )
    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')
    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    if projector_type == "linear":
        # NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features
        return nn.Linear(config.mm_hidden_size, config.hidden_size)
    elif projector_type == "stc_connector":
        return STCConnector(config)
    elif projector_type == "stp_connector":
        return STPConnector(config)
    elif projector_type == "stc_connector_v35":
        return STCConnectorV35(config)
    elif projector_type == "spatial_conv":
        return SpatialConv(config)
    elif projector_type == "spatial_pool":
        return SpatialPool(config)
    if projector_type == 'identity':
        return IdentityMap()

    raise ValueError(f'Unknown projector type: {projector_type}')


def build_mlp(depth, hidden_size, output_hidden_size):
    modules = [nn.Linear(hidden_size, output_hidden_size)]
    for _ in range(1, depth):
        modules.append(nn.GELU())
        modules.append(nn.Linear(output_hidden_size, output_hidden_size))
    return nn.Sequential(*modules)


class STCConnector(nn.Module):

    def __init__(self, config, downsample=(2, 2, 2), depth=4, mlp_depth=2):
        """Temporal Convolutional Vision-Language Connector.
        
        Args:
            config: config object.
            downsample: (temporal, height, width) downsample rate.
            depth: depth of the spatial interaction blocks.
            mlp_depth: depth of the vision-language projector layers.
        """
        super().__init__()
        self.encoder_hidden_size = encoder_hidden_size = config.mm_hidden_size
        self.hidden_size = hidden_size = config.hidden_size
        self.output_hidden_size = output_hidden_size = config.hidden_size
        # TODO: make these as config arguments
        self.depth = depth
        self.mlp_depth = mlp_depth
        self.downsample = downsample
        if depth != 0:
            self.s1 = RegStage(
                depth=depth,
                in_chs=encoder_hidden_size,
                out_chs=hidden_size,
                stride=1,
                dilation=1,
                act_layer=nn.SiLU,
                norm_layer=LayerNorm2d,
            )
        else:
            self.s1 = nn.Identity()
        self.sampler = nn.Sequential(
            nn.Conv3d(
                in_channels=hidden_size,
                out_channels=hidden_size,
                kernel_size=downsample,
                stride=downsample,
                padding=1,
                bias=True
            ),
            nn.SiLU()
        )
        if depth != 0:
            self.s2 = RegStage(
                depth=depth,
                in_chs=hidden_size,
                out_chs=hidden_size,
                stride=1,
                dilation=1,
                act_layer=nn.SiLU,
                norm_layer=LayerNorm2d,
            )
        else:
            self.s2 = nn.Identity()
        self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)

    def forward(self, x):
        """Aggregate tokens on the temporal and spatial dimensions.
        Args:
            x: input tokens [b, t, h, w, d] / [b, t, l, d]
        Returns:
            aggregated tokens [b, l, d]
        """
        t = x.size(1)
        if x.ndim == 4:
            hw = int(x.size(2) ** 0.5)
            x = einops.rearrange(x, "b t (h w) d -> b d t h w", h=hw, w=hw)
        elif x.ndim == 5:
            x = einops.rearrange(x, "b t h w d -> b d t h w")

        x = einops.rearrange(x, "b d t h w -> (b t) d h w")
        # 1. the first stage of the adapter
        x = self.s1(x)
        x = einops.rearrange(x, "(b t) d h w -> b d t h w", t=t)
        # 2. downsampler
        x = self.sampler(x)
        new_t = x.size(2)
        # 3. the second stage of the adapter
        x = einops.rearrange(x, "b d t h w -> (b t) d h w")
        x = self.s2(x)
        x = einops.rearrange(x, "(b t) d h w -> b (t h w) d", t=new_t)
        x = self.readout(x)
        return x


class STPConnector(STCConnector):

    def __init__(self, config, downsample=(2, 2, 2), depth=4, mlp_depth=2):
        super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)
        self.sampler = nn.Sequential(nn.AvgPool3d(downsample), nn.SiLU())


class STCConnectorV35(STCConnector):

    def __init__(self, config, downsample=(2, 2, 2), depth=4, mlp_depth=2):
        super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)
        self.sampler = nn.Sequential(
            nn.Conv3d(
                in_channels=self.hidden_size,
                out_channels=self.hidden_size,
                kernel_size=downsample,
                stride=downsample,
                padding=0,
                bias=True
            ),
            nn.SiLU())


class SpatialConv(STCConnector):

    def __init__(self, config, downsample=(1, 2, 2), depth=0, mlp_depth=2):
        super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)


class SpatialPool(STPConnector):

    def __init__(self, config, downsample=(1, 2, 2), depth=0, mlp_depth=2):
        super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)