File size: 6,661 Bytes
e428df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import re
import math
import json
import argparse
import warnings
from tqdm import tqdm

import torch
import decord
import numpy as np
import transformers
from decord import VideoReader, cpu
from torch.utils.data import Dataset, DataLoader

import sys
sys.path.append('./')
from videollama2.conversation import conv_templates, SeparatorStyle
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_video
from videollama2.model.builder import load_pretrained_model


# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')

default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"]
default_mm_start_token =  DEFAULT_MMODAL_START_TOKEN["VIDEO"]
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"]
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"]


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


class VCGPTDataset(Dataset):

    video_formats = ['.mp4', '.avi', '.mov', '.mkv']

    def __init__(self, data_list, processor, num_frames):
        self.data_list = data_list
        self.processor = processor
        self.num_frames = num_frames

    def __len__(self):
        return len(self.data_list)
    
    def __getitem__(self, idx):
        line = self.data_list[idx]
        question = line['Q']
        answer = line['A']
        video_name = line['video_name']

        for fmt in self.video_formats:  # Added this line
            temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
            if os.path.exists(temp_path):
                video_path = temp_path
                break

        video_tensor = process_video(video_path, self.processor, aspect_ratio=None, sample_scheme='uniform', num_frames=self.num_frames)

        return {
            'video': video_tensor,
            'video_name': video_name,
            'question': question,
            'answer': answer,
        }


def collate_fn(batch):
    vid = [x['video'] for x in batch]
    v_id = [x['video_name'] for x in batch]
    qus = [x['question'] for x in batch]
    ans = [x['answer'] for x in batch]
    vid = torch.stack(vid, dim=0)
    return vid, v_id, qus, ans


def get_model_output(model, tokenizer, qs, video_tensor, args):
    if model.config.mm_use_im_start_end:
        qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs
    else:
        qs = default_mm_token + "\n" + qs

    conv = conv_templates[args.conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    # input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
    input_ids = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt').to(args.device)

    attention_mask=input_ids.ne(tokenizer.pad_token_id).to(args.device)

    modal_list = ["video"]
    video_tensor = video_tensor.to(dtype=torch.float16, device=args.device, non_blocking=True)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids.unsqueeze(0),
            attention_mask=attention_mask.unsqueeze(0),
            images_or_videos=[video_tensor],
            modal_list=modal_list,
            do_sample=False,
            max_new_tokens=1024,
            use_cache=True,
            pad_token_id=tokenizer.eos_token_id)

    outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
    return outputs


def run_inference(args):
    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name)

    num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES

    questions = json.load(open(args.question_file, "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)

    assert args.batch_size == 1, "Batch size must be 1 for inference"
    dataset = VCGPTDataset(questions, processor, num_frames)
    dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)

    answer_file = os.path.expanduser(args.answer_file)
    os.makedirs(os.path.dirname(answer_file), exist_ok=True)
    ans_file = open(answer_file, "w")

    output_list = []  # List to store the output results

    # Iterate over each sample in the ground truth file
    for i, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)):

        # reduce batch dimension
        video_tensor = video_tensors[0]
        video_name = video_names[0]
        question = questions[0]
        answer = answers[0]

        output = get_model_output(model, tokenizer, question, video_tensor, args)

        qa = {'video_name': video_name, 'Q': question, 'A': answer, 'P': output}

        ans_file.write(json.dumps(qa) + "\n")

    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # Define the command-line arguments
    parser.add_argument('--model-path', help='', required=True)
    parser.add_argument('--model_base', help='', default=None, type=str, required=False)
    parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
    parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
    parser.add_argument("--conv-mode", type=str, default="llava_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--device", type=str, required=False, default='cuda:0')
    parser.add_argument("--model_max_length", type=int, required=False, default=2048)
    parser.add_argument("--batch-size", type=int, required=False, default=1)
    parser.add_argument("--num-workers", type=int, required=False, default=8)

    args = parser.parse_args()

    run_inference(args)