SyncDreamer / app.py
liuyuan-pal's picture
update
df916e6
raw
history blame
13.1 kB
from functools import partial
from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from omegaconf import OmegaConf
from ldm.util import add_margin, instantiate_from_config
from sam_utils import sam_init, sam_out_nosave
import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://liuyuan-pal.github.io/SyncDreamer/"><img src="https://img.shields.io/badge/SyncDremer-Homepage-blue"></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
</div>
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss
1. Upload the image.
2. Predict the mask for the foreground object.
3. Crop the foreground object.
4. Generate multiview images.
'''
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
_USER_GUIDE3 = "Generated multiview images are shown below!"
deployed = True
class BackgroundRemoval:
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = self.interface([image])[0]
return image
def resize_inputs(image_input, crop_size):
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
results = add_margin(ref_img_, size=256)
return results
def generate(model, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
seed=int(seed)
torch.random.manual_seed(seed)
np.random.seed(seed)
# prepare data
image_input = np.asarray(image_input)
image_input = image_input.astype(np.float32) / 255.0
alpha_values = image_input[:,:, 3:]
image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
image_input = image_input[:, :, :3] * 2.0 - 1.0
image_input = torch.from_numpy(image_input.astype(np.float32))
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
data = {"input_image": image_input, "input_elevation": elevation_input}
for k, v in data.items():
if deployed:
data[k] = v.unsqueeze(0).cuda()
else:
data[k] = v.unsqueeze(0)
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
if deployed:
x_sample = model.sample(data, cfg_scale, batch_view_num)
else:
x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
B, N, _, H, W = x_sample.shape
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
x_sample = x_sample.astype(np.uint8)
results = []
for bi in range(B):
results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
results = np.concatenate(results, 0)
return Image.fromarray(results)
def white_background(img):
img = np.asarray(img,np.float32)/255
rgb = img[:,:,3:] * img[:,:,:3] + 1 - img[:,:,3:]
rgb = (rgb*255).astype(np.uint8)
return Image.fromarray(rgb)
def sam_predict(predictor, removal, raw_im):
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_nobg = removal(raw_im.convert('RGB'))
arr = np.asarray(image_nobg)[:, :, -1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
# image_nobg.save('./nobg.png')
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
# imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
image_sam = np.asarray(image_sam, np.float32) / 255
out_mask = image_sam[:, :, 3:]
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
image_sam = Image.fromarray(out_img, mode='RGBA')
# image_sam.save('./output.png')
torch.cuda.empty_cache()
return image_sam
def run_demo():
# device = f"cuda:0" if torch.cuda.is_available() else "cpu"
# models = None # init_model(device, os.path.join(code_dir, ckpt))
cfg = 'configs/syncdreamer.yaml'
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
config = OmegaConf.load(cfg)
# model = None
if deployed:
model = instantiate_from_config(config.model)
print(f'loading model from {ckpt} ...')
ckpt = torch.load(ckpt,map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=True)
model = model.cuda().eval()
del ckpt
else:
model = None
# init sam model
mask_predictor = sam_init()
removal = BackgroundRemoval()
# with open('instructions_12345.md', 'r') as f:
# article = f.read()
# NOTE: Examples must match inputs
example_folder = os.path.join(os.path.dirname(__file__), 'hf_demo', 'examples')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow.
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
# with gr.Column(scale=0):
# gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[image_block],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
with gr.Column(scale=1):
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=1):
input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True)
cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=True, info='How many instance (16 images per instance)')
batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True)
seed = gr.Number(6033, label='Random seed', interactive=True)
run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=False)\
.success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False)
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
run_btn.click(partial(generate, model), inputs=[batch_view_num, sample_num, cfg_scale, seed, input_block, elevation], outputs=[output_block], queue=False)\
.success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
if __name__=="__main__":
fire.Fire(run_demo)