File size: 11,987 Bytes
8bb8404
 
 
 
 
 
 
 
0fa63ef
8bb8404
0fa63ef
36a325d
8bb8404
864884a
 
 
 
 
 
8bb8404
 
 
 
 
 
 
ab287b7
 
 
 
 
 
 
8bb8404
 
 
0fa63ef
8bb8404
ab287b7
8bb8404
 
 
 
 
 
 
 
 
 
 
 
 
 
0fa63ef
 
959adf1
 
 
 
 
 
36a325d
 
959adf1
 
 
 
 
ab287b7
 
 
 
959adf1
 
ab287b7
 
 
 
959adf1
 
 
 
 
 
 
 
0fa63ef
 
959adf1
8bb8404
a500583
 
 
 
 
 
979cb09
a500583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979cb09
 
 
8bb8404
959adf1
 
0fa63ef
 
 
 
ab287b7
 
 
 
 
 
 
 
 
8bb8404
 
36a325d
8bb8404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab287b7
8bb8404
 
 
0fa63ef
ab287b7
8bb8404
 
36a325d
959adf1
 
a500583
 
959adf1
0fa63ef
ab287b7
8bb8404
959adf1
 
8bb8404
979cb09
8bb8404
 
 
 
0fa63ef
 
8bb8404
a500583
0fa63ef
8bb8404
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from functools import partial

from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from omegaconf import OmegaConf

from ldm.util import add_margin, instantiate_from_config
from sam_utils import sam_init, sam_out_nosave

import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4

_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://liuyuan-pal.github.io/SyncDreamer/"><img src="https://img.shields.io/badge/SyncDremer-Homepage-blue"></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
</div>
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss

1. Upload the image.
2. Predict the mask for the foreground object.
3. Crop the foreground object.
4. Generate multiview images.
'''
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
_USER_GUIDE3 = "Generated multiview images are shown below!"

deployed = True

def resize_inputs(image_input, crop_size):
    alpha_np = np.asarray(image_input)[:, :, 3]
    coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
    min_x, min_y = np.min(coords, 0)
    max_x, max_y = np.max(coords, 0)
    ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
    h, w = ref_img_.height, ref_img_.width
    scale = crop_size / max(h, w)
    h_, w_ = int(scale * h), int(scale * w)
    ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
    results = add_margin(ref_img_, size=256)
    return results

def generate(model, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
    seed=int(seed)
    torch.random.manual_seed(seed)
    np.random.seed(seed)

    # prepare data
    image_input = np.asarray(image_input)
    image_input = image_input.astype(np.float32) / 255.0
    alpha_values = image_input[:,:, 3:]
    image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
    image_input = image_input[:, :, :3] * 2.0 - 1.0
    image_input = torch.from_numpy(image_input.astype(np.float32))
    elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
    data = {"input_image": image_input, "input_elevation": elevation_input}
    for k, v in data.items():
        if deployed:
            data[k] = v.unsqueeze(0).cuda()
        else:
            data[k] = v.unsqueeze(0)
        data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)

    if deployed:
        x_sample = model.sample(data, cfg_scale, batch_view_num)
    else:
        x_sample = torch.zeros(sample_num, 16, 3, 256, 256)

    B, N, _, H, W = x_sample.shape
    x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
    x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
    x_sample = x_sample.astype(np.uint8)

    results = []
    for bi in range(B):
        results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
    results = np.concatenate(results, 0)
    return Image.fromarray(results)

def white_background(img):
    img = np.asarray(img,np.float32)/255
    rgb = img[:,:,3:] * img[:,:,:3] + 1 - img[:,:,3:]
    rgb = (rgb*255).astype(np.uint8)
    return Image.fromarray(rgb)

def sam_predict(predictor, raw_im):
    raw_im = np.asarray(raw_im)
    raw_rgb = white_background(raw_im)
    h, w = raw_im.raw_rgb, raw_im.raw_rgb
    raw_rgb = add_margin(raw_rgb, color=255, size=max(h, w))

    raw_rgb.thumbnail([512, 512], Image.Resampling.LANCZOS)
    image_sam = sam_out_nosave(predictor, raw_rgb.convert("RGB"))

    image_sam = np.asarray(image_sam)
    out_mask = image_sam[:,:,3:]>0
    out_rgb = image_sam[:,:,:3] * out_mask + 1 - out_mask
    out_mask = out_mask.astype(np.uint8) * 255
    out_img = np.concatenate([out_rgb, out_mask], 2)

    image_sam = Image.fromarray(out_img, mode='RGBA')
    torch.cuda.empty_cache()
    return image_sam

def run_demo():
    # device = f"cuda:0" if torch.cuda.is_available() else "cpu"
    # models = None # init_model(device, os.path.join(code_dir, ckpt))
    cfg = 'configs/syncdreamer.yaml'
    ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
    config = OmegaConf.load(cfg)
    # model = None
    if deployed:
        model = instantiate_from_config(config.model)
        print(f'loading model from {ckpt} ...')
        ckpt = torch.load(ckpt,map_location='cpu')
        model.load_state_dict(ckpt['state_dict'], strict=True)
        model = model.cuda().eval()
        del ckpt
    else:
        model = None

    # init sam model
    mask_predictor = sam_init()

    # with open('instructions_12345.md', 'r') as f:
    #     article = f.read()

    # NOTE: Examples must match inputs
    example_folder = os.path.join(os.path.dirname(__file__), 'hf_demo', 'examples')
    example_fns = os.listdir(example_folder)
    example_fns.sort()
    examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]

    # Compose demo layout & data flow.
    with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
            # with gr.Column(scale=0):
            #     gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
        gr.Markdown(_DESCRIPTION)

        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
                guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
                gr.Examples(
                    examples=examples_full,  # NOTE: elements must match inputs list!
                    inputs=[image_block],
                    outputs=[image_block],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=40
                )


            with gr.Column(scale=1):
                sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
                crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
                crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
                fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)

            with gr.Column(scale=1):
                input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
                elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True)
                cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
                sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=True, info='How many instance (16 images per instance)')
                batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True)
                seed = gr.Number(6033, label='Random seed', interactive=True)
                run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
                fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)

        output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)

        update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
        image_block.change(fn=partial(sam_predict, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\
                   .success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False)

        crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
                        .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
        crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
                       .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)

        run_btn.click(partial(generate, model), inputs=[batch_view_num, sample_num, cfg_scale, seed, input_block, elevation], outputs=[output_block], queue=False)\
               .success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)

    demo.queue().launch(share=False, max_threads=80)  # auth=("admin", os.environ['PASSWD'])

if __name__=="__main__":
    fire.Fire(run_demo)