File size: 8,866 Bytes
5af269e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from collections import OrderedDict
import math
from typing import Callable, Optional, Sequence, Tuple

import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint

class LayerNormFp32(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(orig_type)


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm (with cast back to input dtype)."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(orig_type)
    

class QuickGELU(nn.Module):
    # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)
    

class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class PatchDropout(nn.Module):
    """
    https://arxiv.org/abs/2212.00794
    """

    def __init__(self, prob, exclude_first_token=True):
        super().__init__()
        assert 0 <= prob < 1.
        self.prob = prob
        self.exclude_first_token = exclude_first_token  # exclude CLS token

    def forward(self, x):
        if not self.training or self.prob == 0.:
            return x

        if self.exclude_first_token:
            cls_tokens, x = x[:, :1], x[:, 1:]
        else:
            cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])

        batch = x.size()[0]
        num_tokens = x.size()[1]

        batch_indices = torch.arange(batch)
        batch_indices = batch_indices[..., None]

        keep_prob = 1 - self.prob
        num_patches_keep = max(1, int(num_tokens * keep_prob))

        rand = torch.randn(batch, num_tokens)
        patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices

        x = x[batch_indices, patch_indices_keep]

        if self.exclude_first_token:
            x = torch.cat((cls_tokens, x), dim=1)

        return x


class Attention(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=True,
            scaled_cosine=False,
            scale_heads=False,
            logit_scale_max=math.log(1. / 0.01),
            attn_drop=0.,
            proj_drop=0.
    ):
        super().__init__()
        self.scaled_cosine = scaled_cosine
        self.scale_heads = scale_heads
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.logit_scale_max = logit_scale_max

        # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
        self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
        if qkv_bias:
            self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
        else:
            self.in_proj_bias = None

        if self.scaled_cosine:
            self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
        else:
            self.logit_scale = None
        self.attn_drop = nn.Dropout(attn_drop)
        if self.scale_heads:
            self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
        else:
            self.head_scale = None
        self.out_proj = nn.Linear(dim, dim)
        self.out_drop = nn.Dropout(proj_drop)

    def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
        L, N, C = x.shape
        q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
        q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
        k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
        v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)

        if self.logit_scale is not None:
            attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
            logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
            attn = attn.view(N, self.num_heads, L, L) * logit_scale
            attn = attn.view(-1, L, L)
        else:
            q = q * self.scale
            attn = torch.bmm(q, k.transpose(-1, -2))

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
                new_attn_mask.masked_fill_(attn_mask, float("-inf"))
                attn_mask = new_attn_mask
            attn += attn_mask

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = torch.bmm(attn, v)
        if self.head_scale is not None:
            x = x.view(N, self.num_heads, L, C) * self.head_scale
            x = x.view(-1, L, C)
        x = x.transpose(0, 1).reshape(L, N, C)
        x = self.out_proj(x)
        x = self.out_drop(x)
        return x
    

class ResidualAttentionBlock(nn.Module):
    def __init__(
            self,
            d_model: int,
            n_head: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            is_cross_attention: bool = False,
    ):
        super().__init__()

        self.ln_1 = norm_layer(d_model)
        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
        if is_cross_attention:
            self.ln_1_kv = norm_layer(d_model)

        self.ln_2 = norm_layer(d_model)
        mlp_width = int(d_model * mlp_ratio)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, mlp_width)),
            ("gelu", act_layer()),
            ("c_proj", nn.Linear(mlp_width, d_model))
        ]))
        self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()

    def attention(
            self,
            q_x: torch.Tensor,
            k_x: Optional[torch.Tensor] = None,
            v_x: Optional[torch.Tensor] = None,
            attn_mask: Optional[torch.Tensor] = None,
    ):
        k_x = k_x if k_x is not None else q_x
        v_x = v_x if v_x is not None else q_x

        attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
        return self.attn(
            q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
        )[0]

    def forward(
            self,
            q_x: torch.Tensor,
            k_x: Optional[torch.Tensor] = None,
            v_x: Optional[torch.Tensor] = None,
            attn_mask: Optional[torch.Tensor] = None,
    ):
        k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
        v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None

        x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
        x = x + self.ls_2(self.mlp(self.ln_2(x)))
        return x
    

class Transformer(nn.Module):
    def __init__(
            self,
            width: int,
            layers: int,
            heads: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.grad_checkpointing = False

        self.resblocks = nn.ModuleList([
            ResidualAttentionBlock(
                width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer)
            for _ in range(layers)
        ])

    def get_cast_dtype(self) -> torch.dtype:
        if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
            return self.resblocks[0].mlp.c_fc.int8_original_dtype
        return self.resblocks[0].mlp.c_fc.weight.dtype

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        for r in self.resblocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
                x = checkpoint(r, x, None, None, attn_mask)
            else:
                x = r(x, attn_mask=attn_mask)
        return x