Spaces:
Sleeping
Sleeping
File size: 14,815 Bytes
5af269e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import argparse, os, sys, glob
import datetime, time
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
from einops import rearrange, repeat
from collections import OrderedDict
import torch
import torchvision
from torch.utils.data import DataLoader
from pytorch_lightning import seed_everything
## note: decord should be imported after torch
from decord import VideoReader, cpu
from PIL import Image
import json
from torchvision.transforms import transforms
from torchvision.utils import make_grid
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler
from utils.utils import instantiate_from_config
from utils.save_video import tensor_to_mp4
def save_img(img, path, is_tensor=True):
if is_tensor:
img = img.permute(1, 2, 0).cpu().numpy()
img = (img * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
img = Image.fromarray(img)
img.save(path)
def get_filelist(data_dir, ext='*'):
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
file_list.sort()
return file_list
def load_model_checkpoint(model, ckpt):
state_dict = torch.load(ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
else:
# deepspeed
state_dict = OrderedDict()
for key in state_dict['module'].keys():
state_dict[key[16:]]=state_dict['module'][key]
model.load_state_dict(state_dict, strict=False)
print('>>> model checkpoint loaded.')
return model
def load_data_from_json(data_dir, filename=None, DISABLE_MULTI_REF=False):
# load data from json file
if filename is not None:
json_file = os.path.join(data_dir, filename)
with open(json_file, 'r') as f:
data = json.load(f)
else:
json_file = get_filelist(data_dir, 'json')
assert len(json_file) > 0, "Error: found NO prompt file!"
default_idx = 0
default_idx = min(default_idx, len(json_file)-1)
if len(json_file) > 1:
print(f"Warning: multiple prompt files exist. The one {os.path.split(json_file[default_idx])[1]} is used.")
## only use the first one (sorted by name) if multiple exist
with open(json_file[default_idx], 'r') as f:
data = json.load(f)
n_samples = len(data)
data_list = []
style_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(512),
torchvision.transforms.CenterCrop(512),
torchvision.transforms.ToTensor(),
torchvision.transforms.Lambda(lambda x: x * 2. - 1.),
])
for idx in range(n_samples):
prompt = data[idx]['prompt']
# load style image
if data[idx]['style_path'] is not None:
style_path = data[idx]['style_path']
if isinstance(style_path, list) and not DISABLE_MULTI_REF:
style_imgs = []
for path in style_path:
style_img = Image.open(os.path.join(data_dir, path)).convert('RGB')
style_img_tensor = style_transforms(style_img)
style_imgs.append(style_img_tensor)
style_img_tensor = torch.stack(style_imgs, dim=0)
elif isinstance(style_path, list) and DISABLE_MULTI_REF:
rand_idx = np.random.randint(0, len(style_path))
style_img = Image.open(os.path.join(data_dir, style_path[rand_idx])).convert('RGB')
style_img_tensor = style_transforms(style_img)
print(f"Warning: multiple style images exist. The one {style_path[rand_idx]} is used.")
else:
style_img = Image.open(os.path.join(data_dir, style_path)).convert('RGB')
style_img_tensor = style_transforms(style_img)
else:
raise ValueError("Error: style image path is None!")
data_list.append({
'prompt': prompt,
'style': style_img_tensor
})
return data_list
def save_results(prompt, samples, filename, sample_dir, prompt_dir, fps=10, out_type='video'):
## save prompt
prompt = prompt[0] if isinstance(prompt, list) else prompt
path = os.path.join(prompt_dir, "%s.txt"%filename)
with open(path, 'w') as f:
f.write(f'{prompt}')
f.close()
## save video
if out_type == 'image':
n = samples.shape[0]
output = make_grid(samples, nrow=n, normalize=True, range=(-1, 1))
output_img = Image.fromarray(output.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy())
output_img.save(os.path.join(sample_dir, "%s.jpg"%filename))
elif out_type == 'video':
## save video
# b,c,t,h,w
video = samples.detach().cpu()
video = torch.clamp(video.float(), -1., 1.)
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
path = os.path.join(sample_dir, "%s.mp4"%filename)
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
else:
raise ValueError("Error: output type should be image or video!")
def style_guided_synthesis(model, prompts, style, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
unconditional_guidance_scale=1.0, unconditional_guidance_scale_style=None, **kwargs):
ddim_sampler = DDIMSampler(model) if unconditional_guidance_scale_style is None else DDIMStyleSampler(model)
batch_size = noise_shape[0]
## get condition embeddings (support single prompt only)
if isinstance(prompts, str):
prompts = [prompts]
cond = model.get_learned_conditioning(prompts)
# cond = repeat(cond, 'b n c -> (b f) n c', f=16)
if unconditional_guidance_scale != 1.0:
prompts = batch_size * [""]
uc = model.get_learned_conditioning(prompts)
# uc = repeat(uc, 'b n c -> (b f) n c', f=16)
else:
uc = None
if len(style.shape) == 4:
style_cond = model.get_batch_style(style)
append_to_context = model.adapter(style_cond)
else:
bs, n, c, h, w = style.shape
style = rearrange(style, "b n c h w -> (b n) c h w")
style_cond = model.get_batch_style(style)
style_cond = rearrange(style_cond, "(b n) l c -> b (n l ) c", b=bs)
append_to_context = model.adapter(style_cond)
# append_to_context = repeat(append_to_context, 'b n c -> (b f) n c', f=16)
if hasattr(model.adapter, "scale_predictor"):
scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1))
else:
scale_scalar = None
batch_variants = []
for _ in range(n_samples):
if ddim_sampler is not None:
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=noise_shape[0],
shape=noise_shape[1:],
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_guidance_scale_style=unconditional_guidance_scale_style,
unconditional_conditioning=uc,
eta=ddim_eta,
temporal_length=noise_shape[2],
append_to_context=append_to_context,
scale_scalar=scale_scalar,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = model.decode_first_stage(samples)
batch_variants.append(batch_images)
## variants, batch, c, t, h, w
batch_variants = torch.stack(batch_variants)
return batch_variants.permute(1, 0, 2, 3, 4, 5)
def run_inference(args, gpu_num, gpu_no):
## model config
config = OmegaConf.load(args.base)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['adapter_config']['params']['scale'] = args.style_weight
print(f"Set adapter scale to {args.style_weight:.2f}")
model = instantiate_from_config(model_config)
model = model.cuda(gpu_no)
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, args.ckpt_path)
model.load_pretrained_adapter(args.adapter_ckpt)
if args.out_type == 'video' and args.temporal_ckpt is not None:
model.load_pretrained_temporal(args.temporal_ckpt)
model.eval()
## run over data
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
## latent noise shape
h, w = args.height // 8, args.width // 8
channels = model.channels
frames = model.temporal_length if args.out_type == 'video' else 1
noise_shape = [args.bs, channels, frames, h, w]
sample_dir = os.path.join(args.savedir, "samples")
prompt_dir = os.path.join(args.savedir, "prompts")
style_dir = os.path.join(args.savedir, "style")
os.makedirs(sample_dir, exist_ok=True)
os.makedirs(prompt_dir, exist_ok=True)
os.makedirs(style_dir, exist_ok=True)
## prompt file setting
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!"
data_list = load_data_from_json(args.prompt_dir, args.filename, args.disable_multi_ref)
num_samples = len(data_list)
samples_split = num_samples // gpu_num
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1)))
data_list_rank = [data_list[i] for i in indices]
start = time.time()
for idx, indice in tqdm(enumerate(range(0, len(data_list_rank), args.bs)), desc='Sample Batch'):
prompts = [batch_data['prompt'] for batch_data in data_list_rank[indice:indice+args.bs]]
styles = [batch_data['style'] for batch_data in data_list_rank[indice:indice+args.bs]]
if isinstance(styles, list):
styles = torch.stack(styles, dim=0).to("cuda")
else:
styles = styles.unsqueeze(0).to("cuda")
# if os.path.exists(os.path.join(args.savedir, 'style/{:04d}_style_randk{:d}.png'.format(idx + 1, gpu_no))):
# continue
with torch.cuda.amp.autocast(dtype=torch.float32):
batch_samples = style_guided_synthesis(model, prompts, styles, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \
args.unconditional_guidance_scale, args.unconditional_guidance_scale_style)
if args.out_type == 'image':
batch_samples = batch_samples[:, :, :, 0, :, :]
if len(styles.shape) == 4:
for nn in range(styles.shape[0]):
filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split)
save_img(styles[nn], os.path.join(style_dir, f'{filename}.png'))
else:
for nn in range(styles.shape[0]):
filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split)
for i in range(styles.shape[1]):
save_img(styles[nn, i], os.path.join(style_dir, f'{filename}_{i:02d}.png'))
## save each example individually
for nn, samples in enumerate(batch_samples):
## samples : [n_samples,c,t,h,w]
prompt = prompts[nn]
filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split)
for i in range(args.n_samples):
save_results(prompt, samples[i:i+1], f"{filename}_{i}", sample_dir, prompt_dir, fps=10, out_type=args.out_type)
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", type=str, default=None, help="results saving path")
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path")
parser.add_argument("--temporal_ckpt", type=str, default=None, help="temporal checkpoint path")
parser.add_argument("--base", type=str, help="config (yaml) path")
parser.add_argument("--cond_type", default='style', type=str, help="conditon type: {style, depth, style_depth}")
parser.add_argument("--out_type", default='video', type=str, help="output type: {image, video}")
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
parser.add_argument("--filename", type=str, default=None, help="a data dir containing videos and prompts")
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
parser.add_argument("--bs", type=int, default=1, help="batch size for inference")
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
parser.add_argument("--unconditional_guidance_scale_style", type=float, default=None, help="prompt classifier-free guidance")
parser.add_argument("--seed", type=int, default=0, help="seed for seed_everything")
parser.add_argument("--style_weight", type=float, default=1.0)
parser.add_argument("--disable_multi_ref", action='store_true', help="disable multiple style images")
return parser
if __name__ == '__main__':
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
print("@CoLVDM cond-Inference: %s"%now)
parser = get_parser()
args = parser.parse_args()
seed_everything(args.seed)
rank, gpu_num = 0, 1
run_inference(args, gpu_num, rank) |