Spaces:
Configuration error
Configuration error
limitedonly41
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Check if MPS (Metal Performance Shaders) is available, otherwise use CPU
|
8 |
+
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
9 |
+
device = torch.device('mps')
|
10 |
+
print("MPS available, using MPS.")
|
11 |
+
else:
|
12 |
+
device = torch.device('cpu')
|
13 |
+
print("MPS not available, using CPU.")
|
14 |
+
|
15 |
+
# Load the YOLOv8 model
|
16 |
+
model = YOLO("yolov8n.pt").to(device)
|
17 |
+
|
18 |
+
# Classes to count: 0 = person, 2 = car
|
19 |
+
classes_to_count = [0, 2] # person and car classes for counting
|
20 |
+
|
21 |
+
# Initialize unique ID storage for each class
|
22 |
+
unique_people_ids = set()
|
23 |
+
unique_car_ids = set()
|
24 |
+
|
25 |
+
def process_video(video_input):
|
26 |
+
global unique_people_ids, unique_car_ids
|
27 |
+
unique_people_ids = set()
|
28 |
+
unique_car_ids = set()
|
29 |
+
|
30 |
+
# Open the input video
|
31 |
+
cap = cv2.VideoCapture(video_input)
|
32 |
+
assert cap.isOpened(), "Error reading video file"
|
33 |
+
|
34 |
+
# Get video properties
|
35 |
+
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
36 |
+
|
37 |
+
# Set up video writer to store annotated video as frames are processed
|
38 |
+
output_frames = []
|
39 |
+
|
40 |
+
frame_counter = 0
|
41 |
+
frame_skip = 5 # Process every 3rd frame
|
42 |
+
|
43 |
+
while cap.isOpened():
|
44 |
+
success, frame = cap.read()
|
45 |
+
if not success:
|
46 |
+
break
|
47 |
+
|
48 |
+
if frame_counter % frame_skip != 0:
|
49 |
+
frame_counter += 1
|
50 |
+
continue
|
51 |
+
|
52 |
+
# Calculate video timestamp based on frame number and FPS
|
53 |
+
video_time_elapsed = frame_counter / fps
|
54 |
+
video_timestamp = time.strftime('%H:%M:%S', time.gmtime(video_time_elapsed))
|
55 |
+
|
56 |
+
# Run object detection and tracking on the frame
|
57 |
+
results = model.track(frame, persist=True, device=device, classes=classes_to_count, verbose=False, conf=0.4)
|
58 |
+
|
59 |
+
# Initialize counters for current frame
|
60 |
+
people_count = 0
|
61 |
+
car_count = 0
|
62 |
+
|
63 |
+
# Process detections to track unique IDs
|
64 |
+
for det in results[0].boxes:
|
65 |
+
try:
|
66 |
+
object_id = int(det.id[0])
|
67 |
+
except:
|
68 |
+
pass
|
69 |
+
if object_id is None:
|
70 |
+
continue # Skip objects without an ID
|
71 |
+
|
72 |
+
if det.cls == 0: # person class
|
73 |
+
if object_id not in unique_people_ids:
|
74 |
+
unique_people_ids.add(object_id) # Add unique person ID
|
75 |
+
people_count += 1
|
76 |
+
elif det.cls == 2: # car class
|
77 |
+
if object_id not in unique_car_ids:
|
78 |
+
unique_car_ids.add(object_id) # Add unique car ID
|
79 |
+
car_count += 1
|
80 |
+
|
81 |
+
# Annotate the frame with the current and total counts of unique objects
|
82 |
+
annotated_frame = results[0].plot()
|
83 |
+
|
84 |
+
# Display unique people and car count on the frame
|
85 |
+
cv2.putText(annotated_frame, f'Unique People: {len(unique_people_ids)} | Unique Cars: {len(unique_car_ids)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
86 |
+
|
87 |
+
# Store the annotated frame
|
88 |
+
output_frames.append(annotated_frame)
|
89 |
+
|
90 |
+
# Increment frame counter
|
91 |
+
frame_counter += 1
|
92 |
+
|
93 |
+
cap.release()
|
94 |
+
|
95 |
+
# Return processed video frames
|
96 |
+
return output_frames
|
97 |
+
|
98 |
+
def video_pipeline(video_file):
|
99 |
+
# Convert video into individual frames
|
100 |
+
output_frames = process_video(video_file)
|
101 |
+
|
102 |
+
# Encode the frames back into a video
|
103 |
+
output_video_path = 'output.mp4'
|
104 |
+
h, w, _ = output_frames[0].shape
|
105 |
+
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 20, (w, h))
|
106 |
+
for frame in output_frames:
|
107 |
+
out.write(frame)
|
108 |
+
out.release()
|
109 |
+
|
110 |
+
return output_video_path
|
111 |
+
|
112 |
+
# Gradio Interface
|
113 |
+
title = "YOLOv8 Object Tracking with Unique ID Counting"
|
114 |
+
description = "Upload a video to detect and count unique people and cars using YOLOv8."
|
115 |
+
|
116 |
+
interface = gr.Interface(
|
117 |
+
fn=video_pipeline,
|
118 |
+
inputs=gr.Video(label="Input Video"),
|
119 |
+
outputs=gr.Video(label="Processed Video"),
|
120 |
+
title=title,
|
121 |
+
description=description,
|
122 |
+
live=True
|
123 |
+
)
|
124 |
+
|
125 |
+
# Launch Gradio interface
|
126 |
+
interface.launch()
|