cyclegan_test / app.py
lim123's picture
Upload 6 files
7afc912
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/CycleGAN", compile=False)
# Define the standard image size.
orig_img_size = (286, 286)
# Size of the random crops to be used during training.
input_img_size = (256, 256, 3)
def normalize_img(img):
img = tf.cast(img, dtype=tf.float32)
# Map values in the range [-1, 1]
return (img / 127.5) - 1.0
def preprocess_test_image(img):
# Only resizing and normalization for the test images.
img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])
img = normalize_img(img)
return img
# img_path = './n02381460_1010.jpg'
def generate_img(img_path):
img = tf.io.read_file(img_path)
img = tf.image.decode_png(img)
img = tf.expand_dims(img, axis=0)
img = preprocess_test_image(img)
prediction = model(img, training=False)[0].numpy()
prediction = (prediction * 127.5 + 127.5).astype(np.uint8)
return prediction
image = gr.inputs.Image(type="filepath")
op = gr.outputs.Image(type="numpy")
iface = gr.Interface(
generate_img,
image,
op,
title="CycleGAN",
description='Keras Implementation of CycleGAN model using Horse to Zebra dataset',
article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a>. Based on the keras example from <a href="https://keras.io/examples/generative/cyclegan/">A_K_Nain</a>',
examples=["n02381460_360.jpg", "n02381460_4410.jpg"],
)
iface.launch(cache_examples=True)