Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,123 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import requests
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
from google.cloud import storage
|
7 |
-
from
|
8 |
-
|
9 |
-
from
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
import uvicorn
|
12 |
-
import tempfile
|
13 |
|
14 |
-
|
15 |
|
|
|
16 |
API_KEY = os.getenv("API_KEY")
|
17 |
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
|
18 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
19 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
20 |
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
app = FastAPI()
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
model_name: str
|
32 |
pipeline_task: str
|
33 |
input_text: str
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
50 |
-
return BytesIO(blob.download_as_bytes())
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
56 |
try:
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
file_content = requests.get(file_url).content
|
68 |
-
blob_name = f"{model_name}/{file_name}"
|
69 |
-
bucket.blob(blob_name).upload_from_file(BytesIO(file_content))
|
70 |
-
else:
|
71 |
-
raise HTTPException(status_code=404, detail="Error al acceder al 谩rbol de archivos de Hugging Face.")
|
72 |
except Exception as e:
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
"config.json",
|
83 |
-
"tokenizer.json",
|
84 |
-
"model.safetensors",
|
85 |
-
]
|
86 |
-
|
87 |
-
model_files_exist = all(gcs_handler.file_exists(f"{model_prefix}/{file}") for file in model_files)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
config_stream = model_files_streams.get("config.json")
|
95 |
-
tokenizer_stream = model_files_streams.get("tokenizer.json")
|
96 |
-
model_stream = model_files_streams.get("pytorch_model.bin")
|
97 |
-
|
98 |
-
if not config_stream or not tokenizer_stream or not model_stream:
|
99 |
-
raise HTTPException(status_code=500, detail="Required model files missing.")
|
100 |
-
|
101 |
-
with tempfile.TemporaryDirectory() as tmp_dir:
|
102 |
-
config_path = os.path.join(tmp_dir, "config.json")
|
103 |
-
tokenizer_path = os.path.join(tmp_dir, "tokenizer.json")
|
104 |
-
model_path = os.path.join(tmp_dir, "pytorch_model.bin")
|
105 |
-
|
106 |
-
with open(config_path, 'wb') as f:
|
107 |
-
f.write(config_stream.read())
|
108 |
-
with open(tokenizer_path, 'wb') as f:
|
109 |
-
f.write(tokenizer_stream.read())
|
110 |
-
with open(model_path, 'wb') as f:
|
111 |
-
f.write(model_stream.read())
|
112 |
-
|
113 |
-
model = AutoModelForCausalLM.from_pretrained(tmp_dir, from_tf=True)
|
114 |
-
tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
115 |
-
|
116 |
-
pipeline_ = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer)
|
117 |
-
|
118 |
-
result = pipeline_(request.input_text)
|
119 |
|
120 |
return {"response": result}
|
121 |
-
|
122 |
except HTTPException as e:
|
|
|
123 |
raise e
|
124 |
except Exception as e:
|
125 |
-
|
|
|
126 |
|
127 |
if __name__ == "__main__":
|
|
|
128 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
+
import logging
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
from google.cloud import storage
|
6 |
+
from transformers import pipeline
|
7 |
+
import json
|
8 |
+
from google.auth.exceptions import DefaultCredentialsError
|
|
|
|
|
|
|
9 |
|
10 |
+
# Configuraci贸n de GCS
|
11 |
|
12 |
+
# Cargar las variables de entorno
|
13 |
API_KEY = os.getenv("API_KEY")
|
14 |
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
|
15 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
16 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
17 |
|
18 |
+
# Configuraci贸n de logs
|
19 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
try:
|
23 |
+
# Intentar cargar las credenciales de servicio de GCS desde la variable de entorno
|
24 |
+
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) # Cargar el JSON de credenciales
|
25 |
+
storage_client = storage.Client.from_service_account_info(credentials_info) # Crear cliente de GCS
|
26 |
+
bucket = storage_client.bucket(GCS_BUCKET_NAME) # Acceder al bucket
|
27 |
+
|
28 |
+
# Verificaci贸n exitosa
|
29 |
+
logger.info(f"Conexi贸n con Google Cloud Storage exitosa. Bucket: {GCS_BUCKET_NAME}")
|
30 |
+
|
31 |
+
except (DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e:
|
32 |
+
# Manejo de errores en caso de que las credenciales sean incorrectas o faltantes
|
33 |
+
logger.error(f"Error al cargar las credenciales o bucket: {e}")
|
34 |
+
raise RuntimeError(f"Error al cargar las credenciales o bucket: {e}")
|
35 |
|
36 |
+
# Configurar la aplicaci贸n FastAPI
|
37 |
app = FastAPI()
|
38 |
|
39 |
+
# Configuraci贸n de logs
|
40 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
class PredictionRequest(BaseModel):
|
44 |
model_name: str
|
45 |
pipeline_task: str
|
46 |
input_text: str
|
47 |
|
48 |
+
# Funci贸n para obtener la URL del modelo desde GCS
|
49 |
+
def get_gcs_model_url(bucket_name: str, model_name: str):
|
50 |
+
"""
|
51 |
+
Obtiene la URL del modelo desde GCS.
|
52 |
+
"""
|
53 |
+
try:
|
54 |
+
model_dir = f"models/{model_name}/"
|
55 |
+
|
56 |
+
# Verificar si la carpeta del modelo existe en GCS
|
57 |
+
bucket = storage_client.get_bucket(bucket_name)
|
58 |
+
blobs = bucket.list_blobs(prefix=model_dir)
|
59 |
|
60 |
+
# Verificar si existen archivos en el directorio del modelo
|
61 |
+
file_list = [blob.name for blob in blobs]
|
62 |
+
if not file_list:
|
63 |
+
raise HTTPException(status_code=404, detail="No se encontraron los archivos del modelo en GCS.")
|
64 |
+
|
65 |
+
# Construir la URL GCS del modelo (en este caso solo la ruta del directorio)
|
66 |
+
gcs_url = f"gs://{bucket_name}/{model_dir}"
|
67 |
+
|
68 |
+
return gcs_url
|
69 |
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Error al obtener la URL del modelo desde GCS: {str(e)}")
|
72 |
+
raise HTTPException(status_code=500, detail="Error al obtener la URL del modelo desde GCS.")
|
|
|
|
|
73 |
|
74 |
+
# Funci贸n para cargar el pipeline directamente desde GCS como URL
|
75 |
+
def load_pipeline_from_gcs(model_name: str, pipeline_task: str):
|
76 |
+
"""
|
77 |
+
Carga el pipeline directamente desde la URL del modelo en GCS sin usar RAM ni almacenamiento temporal.
|
78 |
+
"""
|
79 |
try:
|
80 |
+
# Obtener la URL del modelo desde GCS
|
81 |
+
model_url = get_gcs_model_url(GCS_BUCKET_NAME, model_name)
|
82 |
+
|
83 |
+
# Cargar el pipeline directamente desde la URL del modelo
|
84 |
+
nlp_pipeline = pipeline(
|
85 |
+
task=pipeline_task,
|
86 |
+
model=model_url, # Usamos la URL de GCS como modelo
|
87 |
+
)
|
88 |
+
|
89 |
+
return nlp_pipeline
|
|
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
+
logger.error(f"Error al cargar el pipeline desde GCS: {str(e)}")
|
92 |
+
raise HTTPException(status_code=500, detail="Error al cargar el pipeline desde GCS.")
|
93 |
|
94 |
+
# Endpoint para realizar la predicci贸n
|
95 |
+
@app.post("/predict")
|
96 |
+
def predict(request: PredictionRequest):
|
97 |
+
"""
|
98 |
+
Endpoint para recibir solicitudes POST con datos JSON y realizar la predicci贸n.
|
99 |
+
"""
|
100 |
try:
|
101 |
+
# Extraer los par谩metros de la solicitud JSON
|
102 |
+
model_name = request.model_name
|
103 |
+
pipeline_task = request.pipeline_task
|
104 |
+
input_text = request.input_text
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Cargar el pipeline directamente desde GCS sin usar RAM ni almacenamiento temporal
|
107 |
+
nlp_pipeline = load_pipeline_from_gcs(model_name, pipeline_task)
|
108 |
|
109 |
+
# Realizar la predicci贸n
|
110 |
+
result = nlp_pipeline(input_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
return {"response": result}
|
113 |
+
|
114 |
except HTTPException as e:
|
115 |
+
logger.error(f"Error en la predicci贸n: {e.detail}")
|
116 |
raise e
|
117 |
except Exception as e:
|
118 |
+
logger.error(f"Error en la predicci贸n: {str(e)}")
|
119 |
+
raise HTTPException(status_code=500, detail=str(e))
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
+
import uvicorn
|
123 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|