gcs / app.py
Hjgugugjhuhjggg's picture
Update app.py
63f92cf verified
raw
history blame
6.9 kB
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import pipeline, AutoConfig, AutoTokenizer
from transformers.utils import logging
from google.cloud import storage
from google.auth.exceptions import DefaultCredentialsError
import uvicorn
import asyncio
import json
from huggingface_hub import login
from dotenv import load_dotenv
import huggingface_hub
from threading import Thread
from typing import AsyncIterator
load_dotenv()
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HUGGINGFACE_HUB_TOKEN = os.getenv("HF_API_TOKEN")
if HUGGINGFACE_HUB_TOKEN:
login(token=HUGGINGFACE_HUB_TOKEN)
os.system("git config --global credential.helper store")
if HUGGINGFACE_HUB_TOKEN:
huggingface_hub.login(token=HUGGINGFACE_HUB_TOKEN, add_to_git_credential=True)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
try:
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
client = storage.Client.from_service_account_info(credentials_info)
bucket = client.get_bucket(GCS_BUCKET_NAME)
logger.info(f"Connection to Google Cloud Storage successful. Bucket: {GCS_BUCKET_NAME}")
except (DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e:
logger.error(f"Error loading credentials or bucket: {e}")
raise RuntimeError(f"Error loading credentials or bucket: {e}")
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = False
chunk_delay: float = 0.1
stop_sequences: list = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-generation"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class GCSModelLoader:
def __init__(self, bucket):
self.bucket = bucket
def _get_gcs_uri(self, model_name):
return f"{model_name}"
def _blob_exists(self, blob_path):
blob = self.bucket.blob(blob_path)
return blob.exists()
def _create_model_folder(self, model_name):
gcs_model_folder = self._get_gcs_uri(model_name)
if not self._blob_exists(f"{gcs_model_folder}/.touch"):
blob = self.bucket.blob(f"{gcs_model_folder}/.touch")
blob.upload_from_string("")
logger.info(f"Created folder '{gcs_model_folder}' in GCS.")
def check_model_exists_locally(self, model_name):
gcs_model_path = self._get_gcs_uri(model_name)
blobs = self.bucket.list_blobs(prefix=gcs_model_path)
return any(blobs)
def download_model_from_huggingface(self, model_name):
logger.info(f"Downloading model '{model_name}' from Hugging Face.")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
gcs_model_folder = self._get_gcs_uri(model_name)
self._create_model_folder(model_name)
tokenizer.save_pretrained(gcs_model_folder)
config.save_pretrained(gcs_model_folder)
for filename in os.listdir(config.name_or_path):
if filename.endswith((".bin", ".safetensors")):
blob = self.bucket.blob(f"{gcs_model_folder}/{filename}")
blob.upload_from_filename(os.path.join(config.name_or_path, filename))
logger.info(f"Model '{model_name}' downloaded and saved to GCS.")
return True
except Exception as e:
logger.error(f"Error downloading model from Hugging Face: {e}")
return False
model_loader = GCSModelLoader(bucket)
class TokenIteratorStreamer:
def __init__(self):
self.queue = asyncio.Queue()
def put(self, value):
self.queue.put_nowait(value)
def end(self):
self.queue.put_nowait(None)
async def __aiter__(self):
return self
async def __anext__(self):
value = await self.queue.get()
if value is None:
raise StopAsyncIteration
return value
@app.post("/generate")
async def generate(request: GenerateRequest):
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
generation_params = request.model_dump(
exclude_none=True,
exclude={'model_name', 'input_text', 'task_type', 'stream', 'chunk_delay'}
)
try:
if not model_loader.check_model_exists_locally(model_name):
if not model_loader.download_model_from_huggingface(model_name):
raise HTTPException(status_code=500, detail=f"Failed to load model: {model_name}")
text_pipeline = pipeline(task_type, model=model_name, token=HUGGINGFACE_HUB_TOKEN, device_map="auto")
token_streamer = TokenIteratorStreamer()
def generate_on_thread(pipeline, input_text, streamer, generation_params):
try:
pipeline(input_text,
max_new_tokens=int(1e9), # Effectively infinite
return_full_text=False,
streamer=streamer,
**generation_params)
finally:
streamer.end()
thread = Thread(target=generate_on_thread, args=(text_pipeline, input_text, token_streamer, generation_params))
thread.start()
async def event_stream() -> AsyncIterator[str]:
chunk_size = 20
tokens_buffer = []
async for token in token_streamer:
tokens_buffer.append(token)
if len(tokens_buffer) >= chunk_size:
yield f"data: {json.dumps({'tokens': tokens_buffer})}\n\n"
tokens_buffer = []
await asyncio.sleep(request.chunk_delay)
if tokens_buffer:
yield f"data: {json.dumps({'tokens': tokens_buffer})}\n\n"
yield "\n\n"
return StreamingResponse(event_stream(), media_type="text/event-stream")
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Internal server error: {e}")
raise HTTPException(status_code=500, detail=f"Internal server error: {e}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)