Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from llama_cpp import Llama
|
4 |
-
from concurrent.futures import
|
5 |
import uvicorn
|
6 |
from dotenv import load_dotenv
|
7 |
from difflib import SequenceMatcher
|
@@ -10,6 +10,7 @@ load_dotenv()
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
|
|
13 |
models = [
|
14 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
15 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
@@ -17,10 +18,8 @@ models = [
|
|
17 |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
|
18 |
]
|
19 |
|
20 |
-
|
21 |
-
for model in models
|
22 |
-
llm = Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename'])
|
23 |
-
llms.append(llm)
|
24 |
|
25 |
class ChatRequest(BaseModel):
|
26 |
message: str
|
@@ -48,6 +47,7 @@ def select_best_response(responses, request):
|
|
48 |
return best_response
|
49 |
|
50 |
def filter_by_coherence(responses, request):
|
|
|
51 |
return responses
|
52 |
|
53 |
def filter_by_similarity(responses):
|
@@ -62,7 +62,8 @@ def filter_by_similarity(responses):
|
|
62 |
|
63 |
@app.post("/generate_chat")
|
64 |
async def generate_chat(request: ChatRequest):
|
65 |
-
with
|
|
|
66 |
futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
|
67 |
responses = [future.result() for future in futures]
|
68 |
|
@@ -70,6 +71,7 @@ async def generate_chat(request: ChatRequest):
|
|
70 |
error_response = next(response for response in responses if "Error" in response)
|
71 |
raise HTTPException(status_code=500, detail=error_response)
|
72 |
|
|
|
73 |
best_response = select_best_response(responses, request)
|
74 |
return {"response": best_response}
|
75 |
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from llama_cpp import Llama
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
import uvicorn
|
6 |
from dotenv import load_dotenv
|
7 |
from difflib import SequenceMatcher
|
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Inicialización de los modelos
|
14 |
models = [
|
15 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
16 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
|
|
18 |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
|
19 |
]
|
20 |
|
21 |
+
# Cargar modelos en memoria
|
22 |
+
llms = [Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) for model in models]
|
|
|
|
|
23 |
|
24 |
class ChatRequest(BaseModel):
|
25 |
message: str
|
|
|
47 |
return best_response
|
48 |
|
49 |
def filter_by_coherence(responses, request):
|
50 |
+
# Puedes implementar un filtro más sofisticado si es necesario
|
51 |
return responses
|
52 |
|
53 |
def filter_by_similarity(responses):
|
|
|
62 |
|
63 |
@app.post("/generate_chat")
|
64 |
async def generate_chat(request: ChatRequest):
|
65 |
+
with ThreadPoolExecutor() as executor:
|
66 |
+
# Ejecutar las tareas en paralelo
|
67 |
futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
|
68 |
responses = [future.result() for future in futures]
|
69 |
|
|
|
71 |
error_response = next(response for response in responses if "Error" in response)
|
72 |
raise HTTPException(status_code=500, detail=error_response)
|
73 |
|
74 |
+
# Seleccionar la mejor respuesta
|
75 |
best_response = select_best_response(responses, request)
|
76 |
return {"response": best_response}
|
77 |
|